
7 A Af94 239 ARTIFICIAL INTELLIGENCE SOFTWdARE
ACQUISITION PROGRAM

i/ i
VOLUME 2 (U) SANDERS ASSOCIATES INC NASHUA NH

BARDAMIL ET AL DEC 87 RADC-TR-87-249-VOL-2UNCLASSIFIED F38602-85-C-8254 FGi/

I. o n - - - --A-- -

"% -~~

J,,

IN

'I

"5 . % i

SIliiiII3

I-- 111

"l'' ++ ++l~ll jle- ,l,,~ ,ll+,.,.e .lml~~l II,,] . l . l iii,, l.k ,,ll - + -- I - + I

Jq

AD-A194 239 -

RADC-TR-87-249, Vol II (of two)
Final Technical Report
December 1987

ARTIFICIAL INTELLIGENCE SOFTWARE
..,'; .. ACQUISITION PROGRAM DTIC

S EECTE
:1.7:::: " APR 2 '71988

Sanders Associates, Inc.

Carol Bardawli, Larry Fry, Sandy King, Linda Leszcynskl and Graham O'Neil

:.:':A A70/kDOFO/FLCEA$E,~ O/STh'/BU770NUN/IMflFO'

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

• """ --" • . -" - - * • - ' . . ,, -"* -'- . '" . 2 ' . k N , ,

-::. . .: :....- -.... . .:.:-."... .:.:::: ..:..:., ,,. '. ,

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-87-249, Vol II (of two) has been reviewed and is approved
for publication.

APPROVED:

RICHARD H. EVANS
Project Engineer

* APPROVED:

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER:

JOHN A. RITZ
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
' mailing list, or if the addressee is no longer employed by your organization,

please notify RADC (COEE) Griffiss AFB NY 13441-5700. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

'.%'%

Z S

o

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

IForm ApprovedREPORT DOCUMENTATION PAGE 0MB No 0704-0788

. % la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASS I F1 ED N/A

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT
N/A Approved for public release;

2b DECLASSIFICA7 'ON 'DOWNGRADING SCHEDULE distributio I unlimited.

N/A
4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

N/A PADC-TR-87-249, Vol II (of two)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Sanders Associates, Inc. (If applicable) Rome Air Development Center (COEE)

6c. ADDRESS (City, State, and ZIPCode) 7b ADDRESS (City, State. and ZIP Code)
95 Canal Street, CS 2004 Griffiss AFB NY 13441-5700

Nashua N 03061-2004

Ba NAME OF FUNDING 'SPONSORING Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) F30602-85-C-0254

Rome Air Development Center COEE

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT0 Griffiss AFB NY 13441-5700 ELEMENT NO NO NO ACCESSION NO.

63728F 2532 01 16

I I TITLE (Include Security Classification)

ARTIFICIAL INTELLIGENCE SOFTWARE ACQUISITION PROGRAM

12 PERSONAL AUTHOR(S)
Carol Bardawil, Larry Fry, Sandy King, Linda Leszcynski, Graham O'Neil

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Oay) 15 PAGE COUNT

Final FROM Aug 85 To AuL87 December 1987 92

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP @Atificial Intelligence,' Software development process,'

% 12 05 software acquisition model, knowledge-1ased systems,'
documentation standards.j , -

* , 19 ABSTRACT (Continue on reverse if necessary and identify by lIock number)
The goal of-this research was to) evaluatethe software development process for artificial
intelligence (AI) systems and postulate a software acquisition model., To accomplish this

research,-the major elements performed were a literature search, a case study analysis of
* 26 knowledge based system (KBS) development efforts, and consultation with experienced Al

system developers. The results of this study are presented in a two volume report.
Volume I presents observations made during the analysis of KBS software developments and
provides summaries of the case study data. A comparison of the KBS development process to
DOD-STD-2167 is also documented. Volume I discusses a KBS process model and customer/
developer interface model. A comparison of the postulated model with DOD-STD-2167 and

DOD-STD-2167A (draft) is made in terms of activities, products, reviews and baselines./

20 DISTRIBUTION IAVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
"UNCLASSIFIEDIUNLIMITED 0 SAME AS RPT 3 DtIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 2c OFFICE YMBOL
RICHARD M. EVANS (315) 330-3564 RADC (COEE)

DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

% te, UNCLASSIFIED

% % % % % %
OA

0'%J401
-. .. ** *. -'..(\./Ay eNS..f~.~~\ ~ *

Contents
Volume II

I Conventional Software Development Methodology 1-1
1.1 Description of DOD-STD-2167 1-1

1.1.1 Disciplined Software Development 1-2
1.1.2 Activities, Products 1-3
1.1.3 Reviews, Baselines 1-5

. "1.1.4 Q uality Evaluation .1-101..4 Qalt Eauain......................................10

1.1.5 Rcscrves 1-12
1.2 Shortcomings of DOD-STD 2167 1-12

1.2.1 Software Problems Unaddressed by 2167 1-12
1.2.2 Open Issues and Revision A 1-13

, 1.2.3 Sequential Nature of 2167 1-14
1.3 Evolution in the Conventional Software Development Process 1-15

1.3.1 Recognition of Prototyping 1-15
1.3.2 Use of Off-the-Shelf Software 1-16
1.3.3 Compatibility with Al Software Development 1-16

2 Properties of a KBS Development Model 2-1

2.1 Provisions 2-1
2.1.1 Visibility 2-1
2.1.2 Control 2-3
2.1.3 Flexibility 2-4
2.1.4 Compatibility 2-4

2.2 Composition 2-5
2.2.1 Activities Identification 2-5

2.2.2 Documentation Needs 2-9

2.2.3 Configuration Management 2-12
2.2.4 Testing Approaches 2-13
2.2.5 Quality Evaluation 2-16

* 2.2.6 Contractual Mechanisms 2-18
2.2.7 Interface to Conventional Software 2-19
2.2.8 Interface to Systems Engineering 2-20

r
3 Derived KBS Models 3-1

3.1 Initial Model Based on KBS Development Characteristics 3-1

3.1.1 System Definition 3-3
3.1.2 System Implementation 3 -.

3.1.3 System O peration . 3-5

3.2 Postulated Model Encompassing DOD Needs 3-6 6

3.2.1 System Definition 3 6
3.2.2 System Implementation3 1 Codes

.*/or

-- 'P ' 'P p

%,%, %p %p % S

3.2.3 System Operation 3-20
3.3 Advantages of the Postulated Model(s) 3-20

3.3.1 Resolution of Common Software Problems 3-20

3.3.2 Meets DOD Management Needs 3-20
3.4 Comparison of KBS and 2167 Interface Models 3-21

3.4.1 Overview 3-21
3.4.2 Products 3-21
3.4.3 Reviews 3-24

3.4.4 Baselines 3-27

4 Recommended Studies /Activities 4-I
4.1 Model Application Case Studies 4-1
4.2 Technology Studies 4-1

4.2.1 Critical System Functions 4-1

4.2.2 Risk Reduction Efforts 4-2
4.3 Engineering Discipline 4-2

Bibliography BIB-I

Acronyms ACR-1

V

p 4

S0%

,

4.

List of Figures

Volume II
1-I Software Development Cycle (per DOD-STD-2167) 1-7
1 -2 Software Development Cycle (Cont.) (per DOD-STD-2167) . . . 1-8
1-3 Waterfall Software Development Model14
1-4 The Prototype Life Cycle Model 1-17

2-1 Top Level View of KBS Software Development.. 2-7
2-2 KBS Formal Test Approach 2-15

3-1 Top Level KBS Process Model 3-1

3-2 Detailed KBS Process Model 3-2
3-3 Sample Hybrid System Organization 3-3
3-4 KBS Developer/Customer Interface Model 3-7

3-5 Interface Requirements Specification Outline 3-8
3-6 KBS Segment Specification Outline 3-10
3- 7 Software Development Plan A Outline 3-11
3-8 Functional Design Document Outline 3-14

p. 3-9 Software Test Description/Procedures Outline 3-17
3-10 Functional Product Specification Outline 3-18
3-11 Software Test Report Outline 3-18

.;

e-' V,5
%

-% % C

O, ,u

List of Tables

Volme II
I.l.,- I DOl)-S'1'l)-2167 Soflware Qumlity I'valuationi A(:tivities .I I I

3.4.1 I Mapping of Phases to Processes 3 22
34.2-2 Mapping of P'roducts 3 2:
3.4.3-3 Mapping of Reviews and Audits :' 25
3.4.4 4 Mapping of Baseli nes/Configuraion 3 27

Ile

.1

Ik

"V

0'

-

, a-.
,...'N-
.00;

*O, .9

List of Contributers

'The following people have contributed to the Artificial Intelligence Software Acquisition Program
(AISAP) study and final report.

Case Study Participants

Marilyn Aglubat Northrop Avionics Division
Sam Ashby Boeing Military Airplane Company
Virginia Barker Digital Equipment Corporation
Carlos Bhola Expert Technologies, Inc.
Dr. R. P. Bonasso The MITRE Corporation (McLean, VA)
Rodney M. Bond ARINC Research Corporation
Douglas Clafin Lockheed Aircraft Service Company
Stan Coffman Lockheed-Georgia Company
P. R. Deweese Lockheed-Georgia Company

- Linda Dudding Lockheed Aircraft Service Company
Vicki Florian Software Architecture and Engineering, Inc.
Kimberly Freitas Inference Corporation
Kermit Gates PAR Government Systems Corporation
Terry Ginn Sanders Associates, Inc.
Gary G. Greenfield Frey Associates, Inc.
Carl Gunther Inference Corporation
William B. Harrelson Brattle Research Corporation
David Harris Sanders Associates, Inc.
Dr. D. F. Hubbard Carnegie Group, Inc.
Ted Jardine Boeing Computer Services
Elizabeth Kooker IBM Federal Systems Group
Robert Lough Northrop Avionics Division
Jim Montague Texas Instruments, Inc.
Edward Orciuch Digital Equipment Corporation
Laurent Piketty Inference Corporation
M. J. Prelle The MITRE Corporation (Bedford, MA)
Jack Rahaim Digital Equipment Corporation
Ethan Scarl The MITRE Corporation (Bedford, MA)
Anthony D. Vanker GTE Data Services

Reviewers/Consultants

Dick Cloutier Sanders Associates, Inc.
Terry Ginn Sanders Associates, Inc.
David Harris Sanders Associates, Inc.
Dr. Charles Rich Massachusetts Institute of Technology
Tom Royer Sanders Associates, Inc.

vii

% % * % % %*j %

Preface

In August 1985, the Rome Air Development Center selected Sanders Associates, Inc. to evaluate
the software development process for Artificial Intelligence (Al) systems and postulate a software
acquisition model. To accomplish these objectives, Sanders devised a strategy consisting of the
following major elements:

e Literature review;

e Case study analysis; and

* Consultation with experienced Al system developers.

"* The case study analyses represent historical data on 26 knowledge base system (KBS) development
" efforts. Because the case data focuses on KBS software, the acquisition model developed pertains

to KBS efforts.

The results of this study are presented in a two volume report. Volume I presents observations
made during the analysis of KBS software developments as well as summaries of the case study

Sdata. A comparison of the KBS development process to DOD-STD-2167 is also made.

Volume 1I presents a KBS process model as well as a postulated customer/developer interface
model. A comparison of the postulated model with DOD-STD-2167 and DOD-STD-2167A (draft)
is made in terms of activities, products, reviews and baselines.

-ax

6%!'

%%

F,

4ix

SECTION 1

Conventional Software Development Methodology

1.1 Description of DOD-STD-2167

Large scale Department of Defense (DOD) computerized system developments, which began in
earnest in the 1960's, have taken many approaches to the generation of software. Although there
were no formally defined models for software development within DOD, an acceptable approach
evolved that became the pattern for software developments acquired under contract to the DOD.
This approach documented by (3, Boehm(, [28, Metzgerl, and others was characterized as the
waterfall software development model. Although the terminology and the break points between
phases varied, the models essentially included the phases of:

* requirements definition;

* design;

* coding and debug;

* integration and testing; and

, operations and maintenance.

During the i970's, a number of activities took place to adopt the waterfall development model
as the methodical way to produce software within DOD. The Air Forces 800-14 Regulation and
the Navy Military Standard 1679 are two examples of the service's desire to manage the software
development process against the backdrop of the waterfall model.

By the late 1970's, numerous development approaches had evolved and it appeared that many of
the DOD agencies were intent on specifying their own unique requirements for developing software.

0. As a result, more and more approaches evolved and industry was faced with managing software

developments using management control systems which were unique to each customer.

In an attempt to bring the Services together, the Joint Logistics Commanders (JLC) Computer
Resource Management Group conducted a workshop in April 1979 to address the management
and control issues concerning DOD software developments. The primary output of the workshop
was the proposition that the Services could and should be developing software under a single set
of policies and procedures and that the commonalities among software applications far exceeded
any unique requirements. The workshop recognized the waterfall model as a proper starting point
and recommended that policy and standards be developed which defined the software development
process. This recommendation prompted the DOD to embark on a standards effort that yielded
DOD-STD-2167, 24 data item descriptions (DIDs), and changes to MIL-STD-483, 490 and 1521 on
5 June 1985. A number of open issues remained when DOD-STD-2167 was published. These issues

%,% W".1-1

0,0

1.1.1 Disc!v-'ined Software Development

have been addressed in a Draft Revision A to the basic standard which was released by DOD for
review on 1 April 1987.

~$... The software development model under DOD-STD-2167 was patterned after the waterfall model
and included the concepts of activities, products, reviews and baselines. The model represents

*>-' software development from the government viewpoint, and as such, visualizes the development
process as a series of sequential phases with reviews and documentation integral to each phase of

The 2167 waterfall model was developed to provide visibility into the software development. pro-
ces- and control mechanisms over the evolving product as development occurred. Heavy emphasis
was placed on configuration identification, through the concept of computer software configuration
items (CSCls), and configuration control. The 2167 requirements for baseline establishment rep-
resents a control mechanism for requirements, design, and code as it evolves. Associated with the
establishment of baselines are various reviews aimed at assessing software development progress at
various phase points (e.g., requirements analysis, preliminary design) and determining readiness
for baseline control.

Another aspect of the 2167 model was the need for flexibility in application and compatibility with
other disciplines. The goal was to develop a standard that could be tailored to various application
needs. Through such an approach, 2167 would provide the framework within which software devel-
opment could occur but at the same time be applicable to the diverse world of DOD applications.
In addition to being flexible, the standard should tie to standards in other disciplinary areas of

*development to include configuration management and system engineering. The changes to Mili-
tary Standards 483, 490 and 1521 were made for compatibility with the DOD-STD-2167 model for
software development.

1.1.1 Disciplined Software Development

l)OD-STD-2167 advocates a disciplined approach to software development. Disciplined develop-
ment involves breaking down the system into manageable pieces and phases that allow for progres-
sive control and visibility into project cost and schedule, and applying the structured engineering
principles advocated in the 1970's. Breaking down the system allows multiple developers to work
in parallel, which is necessary for large projects. The process generally involves a Definition and

* Analysis, Design, Implementation and Testing Phase and includes structured inplementation and
top-down concepts.

The Definition Phase requires that the software developer define what capabilities the software
-.'" should provide, and structure these requirements I, hey are clear, correct and traceable. The
- information established during requirements definition is documented in a Software Requirements

6. Specification which serves as a foundation or baseline for the entire system. Namely, the software
is developed with the intent of specifically implementing the defined requirements.

The Software Design Phase examines the defined requirements and provides a solution on how the
system should be developed. Major aspects of the Design Phase are top-down software design,
interface management control, and software test planning. The main goal of top-down software

. design resides in the stepwise refinement of the solutions into functional and logical components. In
the design, one starts with the most inclusive set of functions and decomposes each until all functions

1-2

- -: -- .r _ . r . . WV r, r WV '. . -. V. W tW W fK. rW r . . ,.W ,M AV .F .MCI.- ... -

1.1.2 Activities, Products

have been accounted for systematically. Results of top-down software design are represented ill
a l)esign Specification which contains a functional description of what the system does and a

logical description of ho, the system is structured. The Design Specification serves as a baseline
froin which future detailed design and coding stern. Structuring tools such as lierarchical Input

Processing Output (111PO) or Program Design Languages (PDL) are encouraged to aid in the
% doculienlation process. Another aspect of the Design Phase is the definition and documentation

of interfaces between components. A precise definition of the interface supports and complements
the modularization of the system. Software testing is also defined during the Design Phase and
ihludes test plans for module integration, system acceptance and site tests for the system.

Implenientation relies heavily on top-down techniques and the Structured Programming philosophy

of writing programs according to a set of rigid rules in order to decrease testing problems, increase

productivity, and increase the readability of the resulting program. 128, Metzgerl. The thrust of
structured programming revolves around the need for clarity, order and readibility to allow for
'-rror-free code that can be understood by any properly trained individual. To encourage readable

" - code. certain coding conventions are adopted that eliminate most unconditional branches and allow
S. tprograms to be developed in a logical sequence, with supporting comments.

"* "The Testing Phase, although often overlooked, is as critical as any other phase because the conse-

.iquences of ineffective testing can result in a defective product and/or a dissatisified customer. The

.main goal of this phase involves thorough testing of the system's capabilities against requirements.
()ftetines, customer training is also incorporated into this phase.

1.1.2 Activities, Products

'..The following subsections present a brief discussion of the activities which are part of the five phases
of a system's life cycle according to DOD-STD-2167:

* Software Requirements;

"Design,

* ((ding and Unit Testing;

9 Computer Software Component (CSC) Integration and Testing; and

" CSCI Testing.

1.1.2.1 Software Requirements Analysis

There are a number of activities performed during the requirements analysis phase of software de-
velopment. These activities include the definition of software requirements, development planning,

and documentation preparation and updating.

* ,4 The primary thrust in requirements definition is to specify the functional, performance, interface
and qualification requirements for a manageable entity of software which is commonly referred to

1-3

.%%
,. . --. 'I

..-.......... t , -.-..... ,.. ...
.~ ~ %

1.1.2 Activities, Products

as a Computer Software Configuration Item (CSCI). Included as part of this activity is the defi-

nition of design and programming constraints, quality requirements and requirements concerning

deliverables.

Development planning involves the identification of resources, organization, schedules and stan-

dards to be applied to the software development process. This planning encompasses the project

management, engineering, configuration management and quality assurance disciplines. The plan

also specifies the extent of involvement in each discipline. Heavy emphasis is placed on the control

aspects of the program in terms of product configuration control for deliverable as well as non-

deliverable software, interface control between system components, and control over project teams
to include subcontractor arrangements.

1.1.2.2 Design

A variety of activities are associated with the Design Phase which includes a definition of the design,

modularization of the CSCIs, interface definition, configuration management and preparation of test

* requirements.

The Design Phase is generally divided into two parts: a preliminary phase and a detailed phase.

Design is characterized by the development of an approach that includes mathematical models,

functional flows and detailed flows to represent and keep track of the breakdown of CSCIs into

system components. Software requirements are progressively refined and allocated to lower level

components. The process within components is defined and an interface relationship between com-

ponents is established. Once documentation is complete, a system's high level design is evaluated

against the requirements and the low level design is evaluated against the high level design.

During the Design Phase, test requirements, responsibilities and schedules for informal testing

should be identified and documented in a Software Development Folder (SDF) for configuration

management purposes. The information tracked by the SDF includes requirements, design consid-

erations and constraints, schedule, status information and test documentation. Test plans should

be developed by the contractor for both formal and informal testing. Resources required for testing

should also be determined.

1.1.2.3 Coding and Unit Testing

Some of the major goals associated with the Coding and Unit Testing Phase are coding and testing

of components within the CSCI, configuration management, storage of test results, and preparation

of test plans.

Components are tested in top-down sequence unless other methodologies have been approved by

the contracting agency. All test results are recorded in the SDF. If changes are required as a result

of the testing exercise, both the design and code should be recorded and updated in the SDF.

Detailed test procedures to conduct informal Computer Software Component (CSC) integration

*6 tests should be developed. Also, test procedures and a means to analyze test results should be

provided for each CSCI.

1-4

A. " " "" . , " -""
%~~~ %AA% % % .- %

1.1.3 Rvviovw, Ba.olino.'

1.1.2.4 Coniputer Software Coniponenit (CSC) Integration arid Testing

'The major goal of Computer Software Component (CSC) Integration and Testing 1.s to integrate
and test aggregates of coded components. The purpose of the phase revolves around the philosphy
that components should be tested according to documented integration test. plans, test descriptions
and test procedures. Likewise, a review of test results, and test plans, descriptions, and procedures
to fully test implemented software should be maintained and documented. Any software changes

N based on testing should be recorded in the design documentation and code as well as updated in
the SDF.

Another aspect of CSC Integration and Testing involves computer memory and processing speed. As
components are integrated, memory and processing time values should be compared with allocations
determined during the Design Phase.

1.1.2.5 CSCI Testing

The main activities of the CSCI Testing Phase involve testing the fully implemented CSCI. Es-
sentially, the objective is to prove that requirements are adequately and appropriately met by the
software. Formal tests should be performed on each CSCI in accordance with the formal test cases
already documented. Results of formal CSCI tests should be recorded in both summary and detail
form. A detailed test history, evaluation of test results, test procedure deviations and recommen-
dations should also be documented. Design and Coding changes based on component test results
should be recorded in the design documentation and code and updated in the SDF.

1.1.3 Reviews, Baselines

- DOD-STD-2167 identifies standards by which deliverable and non-deliverable software can be iden-
tified, specified and managed as configuration items throughout a system's life cycle. The standard
provides for government control and awareness over software configuration items by having the con-
tractor establish three main baselines: Functional, Allocated and Product. A baseline is comprised

V of a configuration identification document or a set of documents that are produced at planned
intervals during a configuration item's life cycle. Completion of the Functional Baseline occurs
at the end of the Pre Software Development Phase; the Allocated Baseline is the product of the

-r.. Requirements Analysis Phase and the Product Baseline marks the end of the Testing Phase. The
military standard also calls for the contractor to maintain internal control over deliverable and
non-deliverable documents and code throughout the software development process by applying
configuration management at the Preliminary Design, Detailed Design, Coding and Unit Testing.
Computer Software Component (CSC) Integration and Testing, and the CSCI Testing Phase.

The next subsections address 2167's view on

* .' : * baselines;

"V- * configuration management;

* reviews; and

1-5

L %

1.1.3 Reviews, Baselines

edocuments produced within a system's life cycle.

Figure 1-1/ 1-2 was extracted from the 5 June 1985 DOD-STD-2167 and depicts the reviews,
- 'baselines, configuration management and documents that are part of the system development pro-

cess. Many of the documents will not be referenced in the following sections, but are requirements

*- of the standard.

1.1.3.1 Pre Software Development

The Functional Baseline which contains the System Segment Specification (SSS) is established no
later than the System Design Review (SDR). The SDR consists of a review to assess the opti-
mization, correlation, completeness, and risks associated with the allocated technical requirements.
Another aspect of the review is to determine whether the system engineering process that produced
the allocated technical requirements of the engineering plan for the next phase is appropriate. The
review continues until a definition of system characteristics occurs and configuration items are
identified.

1.1.3.2 Software Requirements Analysis

The Allocated Baseline for each CSCI is established upon completion of the Software Specification
Review (SSR) and upon authentication by the contracting agency. The purpose of the SSR is
to review the Operational Concept Document (OCD) for the system, the Software Requirements
Specification (SRS) and the Interface Requirements Specification (IRS) for each CSCI. The success
of an SSR is based upon an approval of the SRS, IRS and OCD as forming an adequate foundation
for continuing into the preliminary software design. In many cases, the IRS is not prepared as a
separate document; instead the interface requirements are included in the SRS.

1.1.3.3 Preliminary Design

During the Preliminary Design Review (PDR), the contractor presents the Software Top Level
Design Document (STLDD) and the Software Test Plan (STP) for each CSCI together with pre-
liminary versions of the Computer System Operator's Manual (CSOM), the Software User's Manual

*(SUM), the Computer System Diagnostic Manual (CSDM), and the Computer Resources Integrated
Support Document (CRISD) for review by the contracting agency. The PDR's purpose is to re-
view the top-level design, test plans and preliminary operation and support documents with the

- contracting agency. Upon successful completion of the PDR, a contractor establishes the Devel-
opmental Configuration with the STLDD representing the preliminary design baseline within the

6. Developmental Configuration.

.°

1-6

.~~..- -...-....,...-.....- . "..-.,--_.-,.-.:,,-v .. z....-. ., , .,
- .p -- . * . . .~-. *-*.*..**d. ~ ~ . ~~ -

1.1.3 Reviews, Baselines

PIIASEq SOO FTWIQIIJ AErS PIHE1,ININARtY DETAILED O N1

DEVELOPMIENT ANALYSIS ILTM

SEU NIENT LiPANTS
SPECIFICATIC'N EC1"Ti

I)S FTVARE DEVELOPMENCUMEN

0E QNE I N A

NYTE
TES

P I C N E D FE

;EIE

S

NtIRTE

T

E
PECI

E
CATTIF'N

PAERNELNCIINALY ALLOCATEDR7 SFTAR

(ONFI;ATURAETEVLOPEN

FigureEN USER' Softwar DeeomnIyl prDDSD217

PLNMA
1-7:

*. 0'RE- -1

%- .1 SO TW R CO M E IN OR A

1.1.3 Reviews, Baselines

ll ANI, I I IN I F(Ai..I ION (5(1 I LS I ING,
1I SIIN(; AND 1 ELS 1N(1

PH FLI NIIN Aft) SFT%% ' ItE S PTWA 1. F
'FTUk A V Ti ~T TUT

* PT''I'H PF,.(ED17RE REP..IPT

1'14 Eh t I F,.!E 1)i F i T T,

tE (DE z PECIIICATI ,N

M.JE T PIFIE U V.EF4 Z1 N
Cl DET iiiE.r DE5zCF4IPTI.,N

LEL (D Il'MENT

I NF, MA L IN FIt hiMA L C0h TE

PRN(EDIEWR(R E'l'LT~ FAIA

NF 'IN N1AL -. FTWAFRE
Ti T 1I',EER5

MANUAL- - - - - - - - - - - - - - - - -

~~ -Ji

C: KLY
COMPUTE1R
ISYSTEM
rjIA(INwT c'

L- MA NI' AL ... rM

D- tUFIENT

UPDATED I .'P

SUi(E I

CODE

4I

I ~MAY BE INCI.UrDED
I IN FfoLLOWIN(

I PRIMARY DtCI1MENT
I p- - - -~ OPP.'flT

D. ('IAPIENT
I I MAY BE

FEVmw TW"1EST FVNCTI(INAL I E N D,,R
READINESS .N FIG I I RAT I I L- - SVPI'LIED0AlD I) IS REVIEW AU1DIT I

10 ENTERED INT?'.
I BASELINE

PHYSICAL I ENTERED IN?'.
-J NFI(WIR&ATI.., 1 0 DEVELI PMIENTAL

AUDIT I CC 'NPIUURATI- N

______________I CRISD . CI1NMP11TRIt

- BAIEI.NESDEVELOPMENTAL PPC)DllI' INTE.ITE
B9 OFJU TOBAEIE I D('I'MEPT

1)F' EALOPr~NENTA L CJPCUAIBAENE I SUPITNI
(ONFI4l I11 Il N I__-_-_-_-__-_-_-_-_-__-_-_-_-_-__-_-_-_-_-

Figure 1-2: Software Development Cycle (Cont.) (per DOD-STD.2167)

1-8

-- %~.%S4 S. % 4....' . . .

.. e .1.4 --.~P\ %- %.) %..4
~ .

.4
. .

O-%

1.1.3 Reviews, Baselines

1.1.3.4 Detailed Design

The Critical Design Review (CDR) is established to review the Software Detailed Design Document
(SDDD) and the Software Test Description (STD) document for each CSCI. Other documents
presented by the contractor are the Interface Design Documents (IDDs), the Data Base Design
Documents (DBDDs), the Software Programmer's Manual (SPM), the Firmware Support Manual
(FSM), the updated CSOM, the SIJM, the CSDM and the final CRISD. The main goal of the
CDR is to examine the detailed design, test description, and operational and support documents
with the contracting agency. Once the CDR is successfully complete, the SDDD is entered into the
Developmental Configuration for each CSCI.

1.1.3.5 Coding and Unit Testing

After each component is successfully tested and reviewed, the contractor can enter updated design
documentation, source and object code, and associated listings for the component into the Devel-
opmental Configuration for the CSCI. Other than internal reviews, no major review governs the

* manner in which source and object code is added to the Developmental Configuration. Reviews are
internal in nature and based on evolving source code components, updated software development

.. file information, the updated STLDD, SDDD, IDD, DBDD, review of updated source code, infor-
mal CSC integration test procedures, preliminary Software Test Procedures (STPRs), the CSOM,
SUM, CSDM, the updated SPM and the FSM.

, 1.1.3.6 Computer Software Component (CSC) Integration and Testing

Updated design documentation, source code, object code, and associated listings are entered into
the Developmental Configuration for each CSC during Integration and Testing by the contractor.
The documents entered into the developmental configuration consist of modified source and object
code. A Test Readiness Review (TRR) aimed at checking informal CSC integration test results
and the completeness of the STPR for each CSCI is held by the contractor with the objective to
review informal test results, formal test procedures, and operation and support documents with
the contracting agency. Other documents presented consist of the updated CSOM, the SUM and
the CSDM. Successful completion of a TRR indicates that the contracting agency believes that the
informal test results and software test procedures provide a satisfactory foundation for proceeding

pinto formal CSCI testing.

1.1.3.7 CSCI Testing

The Product Baseline is comprised of the configuration documents for the CSCI(s) that make
up a system. The Software Product Specification (SPS) for a CSCI is entered into the Product
Baseline once the contracting agency authenticates the SPS, and the Functional Configuration
Audit (FCA) and Physical Configuration Audit (PCA) are successfully completed. The FCA is
held to demonstrate to the contracting agency that the CSCI was tested and met the Software
Requirements Specification (SRS). Another goal of the FCA is to show that the CSOM, SUM, and
CSDM address the needs of the computer system's operation and support. The PCAs purpose is

E1-9

, ,., .?- . V-:, , ,. ,. -, . . q , .-

1.1.4 Quality Evaluation

to demonstrate to the contracting agency that an up-to-date technical description of the CSCI is
* . contained within the SPS. The FCA and PCA for a CSCI may be delayed until the system level if

the CSCI requires formal testing upon system level integration. Once the SPS is entered into the
baseline, the CSCI Developmental Configuration may cease to exist.

1.1.4 Quality Evaluation
A

% Software Quality is an effort made by the contractor to build quality into software by an evaluation
of the products, the proposed methodologies employed to produce the product, and through an as-
sessment process that assures the proposed methodologies were properly followed in the production
of the product. To ensure this quality, the contractor needs to define and maintain a set of software
standards against which the quality of software is evaluated. Equally important is the design of a
standard which defines methodologies and tools that help to determine the quality of software and
documentation and the definition of a process to provide quality feedback on identified deficiencies.

Per DOD-STD-2167, a Software Quality Evaluation (SQE) involves the establishment of internal

procedures to:

" evaluate the requirements established for the software;

" evaluate the methodologies established and implemented for developing software;

" evaluate the products of the software development process;

* provide feedback and recommendations based on these evaluations that can be used to effect

improvements in the software quality; and

perform corrective action in terms of detecting, reporting and tracking problems with con-
trolled software and documentation.

The means of evaluating the procedures are specified in either the Software Quality Evaluation
Plan (SQEP) or the Software Development Plan (SDP). The need for independent individuals with

• sufficient responsibility, authority, resources, and independence specified in the SQEP or SDP is
stressed.

The major SQE activities involve planning, internal reviews, formal reviews and audits, accep-
tance inspections, installation and checkout, evaluation of subcontractor products, commercially
available, reusable and Government furnished software use, preparation of quality records, qual-
ity reporting, corrective action system reporting, and quality cost data collection. Each of these
activities and a short description is provided in Table 1.1.4-1.

% The products delivered as proof that a software quality evaluation was performed consist of:
quality records of each quality evaluation performed; quality reports that summarize results and
recommendations of quality evaluations performed in preparation for Government reviews; and
certification as evidence that each required contract line item was delivered as specified in the

contract.

1-10

Quality EvaluatJon

4-p~

Table 1.1.4-1: DOD-STD-2167 Software Quality Evaluation Activities

ACTIVITIES DESCRIPTION
Planning Task planning

Internal Review Reviews of methodologies proposed in the contractor's plan-
ning documents, of software development products and of

each software development phase. Internal reviews should
be held for all phases: the Software Requirements Analy-

-, sis Phase, Preliminary Design Phase, Detailed Design Phase,
Coding and Unit Testing Phase, CSC Integration and Testing
Phase and the CSCI Testing Phase.

Formal Reviews and Audits Products should be reviewed and audited in preparation for

Government reviews.

Acceptance Inspections The contractor should have all products ready for a Govern-
ment acceptance inspection.

Installation and Checkout To make sure that installation and checkout of software com-
plies with subcontract requirements.

Evaluation of Subcontractor To evaluate subcontractor products for completeness, techni-
Products cal adequacy, and compliance with subcontract requirements.

Commercially Evaluation of the plan to insure that relevant software factors
Available Reusable and Gov- have been considered for commercially available, reusable and

'" ernment Furnished Software Government furnished software.

Preparation of Quality Records of each quality evaluation should be maintained
Records along with the evaluation date, evaluation participants, items

or activities reviewed, objectives of the evaluation, all de-
tected problems and recommendations which result from the
evaluation.

Quality Reporting Reports should be written with the results from quality eval-
Juations.

Corrective Action Systems A Corrective Action System should be implemented for all
software and documentation under either Government or con-
tractor control.

Quality Cost Data Data should be gathered on the cost of detecting and correct-
S ing errors in all contractor and Government controlled soft-

ware and documentation. The actual data collected should
be stipulated in either the SQEP or the SDP.

A1-11

0'

% -
*... *. , ~ JgA~ L~~4.~%

1.1.5 Reserves

1.1.5 Reserves

The need for memory reserves and throughput is stressed by DOD-STD-2167 to emphasize that
delivered systems should provide for modifications, maintenance, and enhancement once the system
has been delivered. Sizing and timing parameters for each CSCI, to include minimum reserve capac-
ities, are identified and established during the Software Requirements Analysis and the Preliminary
Design Phase at which time estimates for parameter values and allowable margins are determined.
Throughout the remainder of the software development process, memory size, processing time and
reserve capacities undergo continual monitoring and reallocation. Records that reflect actual values
are updated during integration and testing when parameter values get compared with overall CSCI
sizing, timing and reserve requirements.

1.2 Shortcomings of DOD-STD 2167

Although DOD-STD-2167 is expected to provide better control over software development contracts
than its predeco~qors, there are still some major loose ends which were scheduled to be resolved
with the issuance of Revision A. The primary limitations, discussed in the following subsections,
include

" Software problems unaddressed by 2167;

* Open issues; and

* Sequential nature of the model.

1.2.1 Software Problems Unaddressed by 2167

DOD-STD-2167 does not resolve all problems addressed by the Joint Logistics Commanders Com-
puter Resources Management Group. The unaddressed problems are extracted from the categories
of:

* * Software Life Cycle;

* Software Environment; and

* Software Product.

* The problem categorization identified is based on the report issued by the DOD Joint Services Task
Force, Report of the DOD Task Force on Software Problems.[12, Druffell

DOD-STD-2167 does attempt to resolve the problems stipulated in the DOD Joint Services Task
*. Force report. The report identifies the requirements phase as one of the most vital to the software

* development process in that requirements analysis and definition was the least defined activity and
also the most subject to change. In an effort to remedy inadequate definition, DOD-STD-2167 calls
for a Software Specification Requirements (SSR) document which serves as a fixed requirements

1-12

%, " % "."-% - ". ". " ." ." -%'.% %%. % "" 7 " j'X/% "," ' " • ,~ %, ' ",%% ' % ,' ,

. ., , -.,%,* .% %

'5 1.2.2 Open Issues and Revision A

baseline and foundation for system design, code and test efforts. In order to prepare the SSR
documentation, system requirements must be thoroughly discussed between the contractor and
the contracting agency. The objective is to reduce cost and schedule delays which propogate from

,, , requirement changes incurred from ill-defined or incompletely specified requirements.

*.. tHowever, freezing requirements does not necessarily provide a solution to problems, particularly
where requirements are misunderstood, improperly written, or simply unable to be identified (for
example, due to the novelty of the application) at such an early stage in the project. Oftentimes,
the contracting agency mistakenly believes that the SSR completely reflects the system needs. The
contracting agency's interpretation of what the system will accomplish according to the SSR and
the contractor's understanding and description of the system's capabilities may appear similar yet
differ in meaning. The discrepancy may remain undiscovered until system deployment, introducing
schedule delays and added costs to repair the software.

The domino effect of poorly defined requirements leads to ineffective management, inadequately

*.- designed software and major difficulties with product assurance. Proper management of software
cannot be realized without adequately defined requirements. Unfortunately, incorrect requirements
can often be attributed to the lack of effective communication between management and the con-
tracting agency at the requirements analysis phase, jeopardizing the software development effort
from the very start. Vague or incorrect requirements affect the engineer's ability to design, code
and test the system. In design, the provision of an acceptable program solution to problems relies
on requirements as defined in the specification. Product assurance cannot be guaranteed when the
software requirements do not reflect the system's desired capabilities.

*Another problem identified by the DOD Task Force deals with the transition of software, such
as from exploratory research to engineering development. One software methodology currently
under research and investigation is the use of rapid prototyping as an effective means to define

- - software requirements. This concept of recycling from requirements through system design or
implementation and testing in order to successively refine requirements is not adequately supported
by DOD-STD-2167.

1.2.2 Open Issues and Revision A

At the time DOD-STD-2167 was published on 5 June 1985, there were a number of open issues
identified and agreed to by government and industry representatives that remained to be fixed in
a future revision to the standard. It was agreed that there should be a continuing effort within the

DOD to develop a Revision A which resolved these issues.

The open items included a set of primary and secondary issues that were deemed important to
. resolve but it was decided that the resolution process should not hold up the publication of the

basic version (DOD-STD-2167, 5 June 1985). Primary issues included tailoring, Ada' compatabil-
ity, and systems interfaces among others. Secondary issues included interface to quality assurance,
documentation fragmentation, design methodologies and others. The issues and historical perspec-
tive of the issue resolution process are documented in C'ODSIA Task Group 21-83 Report on the
DOD-STD-2167 (SDS) Package Coordination Rcvicw, dated December 5, 1985.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office)

1-13

k" ,k, - ', ,, ., .:,,- -" .,".........G ..,-,%,. S::%- %. % %.. ,''_.2% .7-"--.%."-' %,:.- ,".'' "..".-".-.-:-":-"," -"f ", --."-"'.' ,",

1.2.3 Sequential Nature of 2167

.

d. Software

- ,.'. Requirements
Analysis Preliminary

, . Design Detailed

Design Coding and

Unit Testing CSC
" "Integration

and Testing CSCI
Testing

Figure 1-3: Waterfall Software Development Model

The publication of the Draft Revison A of 2167 on 1 April 1987, is the culmination of the rewrite
process aimed at resolving the primary and secondary issues. The current on-going review process

*indicates there may be some disagreement between government and industry reviewers as to whether
the issues have been adequately addressed. It's up to the future to determine the outcome of the
issue resolution process.

1.2.3 Sequential Nature of 2167

As previously noted, DOD-STD-2167 is based on the waterfall model approach to software de-
velopment (see figure 1-3). The waterfall model defines separate and distinct phases of software

development which, when performed in a top-down structured manner, claim to result in a "soundly
designed" software product. The waterfall model has historically been the accepted approach to

'. .developing software within the DOD software standards arena.

At the completion of each phase, certain milestones, such as reviews, baselines and completed
documentation, should have been accomplished. As such, the waterfall approach is conducive to
providing managerial visibility and control into the software development process. The milestones
also provide a means of verification/validation for each particular phase which signals the start of
the succeeding phase.

The fundamental problem with the waterfall model, as depicted, is the sequential nature of the
model and the implication that subsequent activities cannot be performed until previous activities
have been completed. An example of this is that design should not be allowed to start until
requirements have been completely defined. This is not the case, nor was it ever the intent of the
DOD-STD-2167 waterfall model. Instead, the model was meant to depict a customer to developer
interface model, and not a process model that the developer would follow in producing the software.

0.- A process model would show definite overlap even to the point that coding may be underway during
.~requirements analysis.
~.

1-14

N %%%

'4 ~~r -'.r -'e4 ,4'_4 &.e.

%".". . .. '..'.%.. . ,'. " ... ,% . , .. %. .. , % %. % .%.. . ,Y; , . ,_., % e:., '' ." ,S ;' :
-, • . °. " ". " " . . . ". " " . . ". - " . . "e . , "P e"w. ,, " -0 ., .0 .. dtex

1.3 Evolution in the Conventional Software Development Process

1.3 Evolution in the Conventional Software Development Pro-
cess

1.3.1 Recognition of Prototyping

The concept of prototyping is gaining recognition in the conventional software development envi-
ronment. The following subsections define the philosophy behind prototyping, and how it can be

: :~ united with the classical waterfall model.

1.3.1.1 Basic Concepts of Prototyping

Prototyping involves the development of a subset of an entire system which is used to demonstrate
the proposed system's functionality to the end-user. Once the users have the opportunity to work
with the prototype, they can provide helpful feedback to the designers. The suggestions made by
the users can be implemented into a successive prototype, which can be tested by the users again

* with the goal of obtaining further suggestions. This process is repeated in an iterative fashion until

the users are satisfied with the prototype's functional performance.

1.3.1.2 Strengths of Prototyping

The prototyping philosophy demands a high level of user involvement. In turn, heavy user in-
volvement increases the likelihood of system success. By seeing their ideas implemented in the
prototype, the users begin to develop a sense of ownership of the system which, in turn, facilitates
acceptance of the final product. In addition, the users who worked on the prototype can assume
responsibility for training other potential users in the operation of the system.

Another strength of prototyping is its ability to clarify poorly defined requirements. This is achieved
through implementing portions of the system and allowing the users to work with it and suggest
design changes. The concept of prototyping is extremely useful in terms of increasing the com-
munication level between the analysts and the users. The iterative nature of prototyping aids in
flushing out many of the hidden or poorly defined requirements early in the life cycle. This process

* greatly reduces the risk of costly unforeseen design changes which typically occur late in the life
cycle.

Prototyping also provides a mechanism in which potential solutions to the problem can be identified
and tested. This allows the designers to determine which solutions are most feasible. When a
solution is tested unsuccessfully, it can be discarded and the focus redirected toward finding a

O.- more efficient and workable solution. The prototype can also help evaluate the verification and
validation issues. Namely, one can use the prototype to answer the questions, "Are we building the
right system?" and "Are we building the system right?". When these questions can be answered

%d affirmatively, the system is considered to be verified and validated.

Another benefit of prototyping is the ability to incrementally build the requirements of the system.
This, along with the above mentioned abilities, enables the designers to evolve the system specifi-

,S cations into fully understood, clearly defined, workable, and robust system requirements. With all

1-15

%e i e
%, " %.%% ..% % %,• ".. , , , %,'.j'. ,, ., ". % % % % - .. "., ,,.% , . -, ,. . . , . .

T - - v --

*1.3.2 Use of Off-the-Shelf Software

these critical issues being addressed earlier in the life cycle, the risk associated with developing the

system can be greatly reduced.

1.3.1.3 Proper Perspectives

* roA prototype is intended to model parts of a system; it is not meant to be a complete version of

the system. Generally, the user interface components of a system are included in the prototype. In

addition, the most technically complex portions of the system should be prototyped to assess the

feasibility of the approach early in the development process. Problems can arise from the reluctance

of managers to throw away software. This can pressure designers to evolve the prototype into a

final product rather than using the prototype to specify requirements and then formally design

the final system. In some small systems, using the prototype as part or all of the final product

* -;. does not present problems. In larger systems, however, this approach could significantly complicate

maintenance of the final product.

1.3.1.4 Incorporating Prototyping into the Waterfall Approach

Prototyping should be performed concurrently with the software requirements analysis phase to

generate more clear and accurate system requirements. Once the users are satisfied with the

prototype's performance, system definition is complete and the project can make the transition into
the remaining phases of the waterfall model. Figure 1-4 illustrates the concept of incorporating

the prototyping concept into the waterfall model.

1.3.2 Use of Off-the-Shelf Software

Within the DOD, there is a definite thrust to capitalize on software already in the commercial

marketplace as long as it meets the needs of the system under development. DOD-STD-2167, in

particular, advocates the use of off-the-shelf (OTS) software but requires that its use be approved
prior to incorporation into a system. Many developers propose OTS software as part of system

development with the result that numerous fielded systems contain these elements.

, As we progress into the Ada age, the concept of reusability is being espoused as a means for

. improving productivity. It is reasonable to expect that some of the reusable software will be OTS

in nature such that it is produced for commercial sale to programs being developed for DOD.
The primary concern on the part of DOD projects are rights issues and the ability to have a
supported product once a system is fielded. It is a management decision to address these issues
on every application of OTS software and to conduct the proper economic analysis to substantiate

*. the decision.

1.3.3 Compatibility with Al Software Development

The previous concepts pertaining to the evolution of the conventional software development process

fit in quite well with the practice of developing knowledge based systems (KBS). Namely, prototyp-
ing is an integral part of KBS development, as discussed in Volume I. Because Al techniques are

1-16
% %O%

-. % .

1.3.3 Compatibility with Al Software Development

Fgr1:TePrototype Lf yl oe

Developmen7

Refiemen

1.3.3 Compatibility with Al Software Development

generally applied to ill-structured problems, prototyping is the means to a better understanding of
the problem itself. As the problem definition becomes increasingly clear, the associated require-
ments can be more accurately stated. Furthermore, well-defined requirements greatly enhance the
probability of a successfully built system.

Prototyping is also used early in a project to demonstrate the feasibility of a given system or
proposed approach. It is also an invaluable mechanism in terms of acquiring and implementing
domain expert knowledge.

With regard to reusable or "off-the-shelf" tools, a KBS can generally be described as consisting of
3 major components:

* Knowledge base;

* Inference engine; and

* User interface.

The knowledge base, which contains all relevant domain knowledge, is a complex entity that must be
uniquely developed for each application. However, the inference engine, which navigates the system
through the knowledge base in search of an acceptable solution, is a fairly standard mechanism.
Consequently, inference engines of several varieties are commercially available.

Shells are more encompassing tools which generally include an inference engine as well as a graph-
ically oriented user interface. There are many KBS shells on the market today suited for a wide
variety of machine architectures ranging from personal computers to large main frames. In an effort
to save resources and/or allow the developers to focus on the critically important generation of a
system's knowledge base, the use of "off-the-shelf" tools is quite common and certainly available
in the technological marketplace.

2-

I.:

6.

1-18

/ , * *. , " . '- . - - . *- . .* . , *.* .; €" %" . * • . ..

S..,

S..

SECTION 2

Properties of a KBS Development Model

2.1 Provisions

Prior to defining the composition of a KBS development model, it is important to consider the
goals to be met. Ideally, we expect such a model to provide both the DOD and its contractors with
a mechanism for successfully developing systems. In this context, a "successful system" is one that
is functionally satisfactory to the DOD, and also complies with the previously established budget
and schedule criteria.

With these goals in mind, a KBS development model should provide the user with the following
features:

* Visibility;

* Control;

* Flexibility; and
* Compatability.

Note that these features should be inherent to a general Al software development model. However,
due to the nature of the case study data presented in Volume I, we are specifically addressing KBS
developments.
The following paragraphs expand upon the four features listed above.

4 '2.1.1 Visibility

A project with a large software investment requires a considerable amount of attention to manage-
ment and control of the software development process. Large software projects are typically broken
down into manageable and modular phases to provide increased visibility into the development
process and to provide management with a more efficient and effective means of controlling this
process. A phased approach to software development supports the proper allocation and man-

0 agemnent of people, product identification and the definition of essential activities, baselines and
reviews.

Specific segments of the software development process for which visibility is particularly important
include the following:

* Progress tracking;

2-1
0,

%- " 1- V -" -, A ' 0 -0 ,

% ~ % " % % 4.

@-

2.1.1 Visibility

" Requirements definition;

" Design and implementation;

" Documentation preparation;

" Product quality; and

" Software change control.

The manner in which visibility pertains to each of the above segments is discussed below.

The progress of a software project is often based on management's perspective and the magnitude
of identifiable products to be delivered. Management's concerns revolve around the availability of

current status information concerning schedule, cost, and resource expenditures. The development
of a KBS differs from a conventional software system in that an iterative approach, including the
development of prototypes, is used. Scheduled technical and management reviews at predefined
intervals provide a means for management to observe the system's ability to perform as required,
as well as information to identify potential risks or areas of uncertainty. In addition, the prototype
reviews also provide a means to determine cost and resource needs for the next iteration. Con-

" '" sequently, updated versions of the requirements can be provided as a product of each prototype
review. This review process is necessary to track development progress.

Successful system implementations depend upon the correctness and completeness of expected
requirements. Because problems suited to KBS resolution are inherently ill-defined at the outset,
the dynamic requirements definition process demands high visibility. The progressive refinement
of requirements based on successive prototypes involves an effort intended to remove inappropriate
goals and to add new requirements as they are identified.

The need for visibility into software design and implementation surfaces particularly with respect
to maintenance of the software in its deployed environment. The level of difficulty involved with
software maintenance increases substantially with the lack of proper design and code documenta-
tion. In-process design reviews provide both a means of tracking progress and a means for assessing

* design documentation completeness in support of those who will ultimately be responsible for main-
tenance.

Product quality is also based on visibility into the software development process. The concept of
building in quality is critical. Prototypes provide direct visibility into a product while simultane-

. ously providing an opportunity for isolating and recognizing testing needs. As will be discussed in
Section 2.2.4, an informal testing process occurs throughout the prototype development activity.
With each prototype, ideas pertinent to a formal evaluation may be documented for inclusion in a
test plan.

Visibility into software changes as they relate to the requirements definition, design and/or imple-
mentation is essential to the overall effort. There must be traceability to identify the source of a
problem as well as accountability to ensure that changes are effected.

2-2

@.%

12.1.2 Control

n2.1.2 Control

Control, another desirable characteristic of sound engineering practices, allows management (cus-
. .tomer and contractor) to create and maintain a functional system based on certain standards and
5/ regulations. Software control appears in:

* the software development effort;

* project changes;
* contract changes;

5-

o document and report generation;

. software quality; and

* reviews and audits.

A discussion on each type of control follows.

Management's ability to effectively control the software effort is proven by the delivery of a working
system. With iteratively developed systems, the responsibility includes regular delivery of planned
prototypes. Some of the major concerns of management involve the exertion of control over the
schedule and budget, as well as reporting status and financial information to upper management
and the contracting agency.

An essential management function is the control over changes in the developing system. Manage-
ment needs to determine what to control (a foundation or baseline), the kinds of changes to be
controlled, and the mechanism for effecting that control.

A means to organize and assess contract changes is another software control issue. Contract changes
should be examined by a competent technical group. Estimates on the cost to implement a change
should be determined. Formal approval by the customer is the final factor determining whether a
contract change should be implemented.

Document control contributes vitally to the success of a project. Therefore, a need exists to create,
update and maintain documents. Proper organization of a document library is generally required.

* The quality of a system is based to some degree on the ability of a system to meet stipulated
customer requirements. However, the system's functionality also depends upon the system's ability
to accomodate future needs. In the extreme, it may be desirable to advocate always building a

more general system than required. One way for management to assess the final quality of a system
is to understand and determine the quality of the baseline design well before acceptance time.

Fiiially, formalized reviews and audits provide a means for measuring progress based on a well-
defined set of criteria. Each review or audit can be designed to present information appropriate
to a program phase or stage. The adequacy of the information can be judged and placed under
control when the related criteria have been satisfied. As an example, requirements reviews would
examine requirements completeness and when found to be acceptable, placed under control. In
a like manner, design and code can be judged with the result of establishing control over them.
Reviews and audits provide one of the more important control mechanisms in a development project.

2-3

% d

2.1.3 Flexibility

2.1.3 Flexibility

A KBS software development model must satisfy the acquisition needs of the contracting agency.

At the same time, it must provide flexibility so as not to unreasonably constrain or inhibit the
software engineering process. Specifically, the model must be tailorable and supportive of various

KBS application requirements, such as real time needs, mission critical environment, etc. The

degree to which the model is applied should primarily be determined as a function of the criticality
and support requirements of the subject system.

The specific development environment proposed by the contractor should not be unduly restricted.
Namely, a contractor should be allowed to prototype on the hardware of his choice so long as the

software can be easily transitioned to the target machine or on-site hardware. Use of shells or

other tools should also be acceptable given the provision that they are compatible with the target

hardware and provided they have reached some level of maturity such that one can trust their use.

The model should also accomodate various knowledge representation implementation techniques

such as rules, frames, constraints and the like. Specific restrictions are not advisable in today's

KBS environment where technological growth is rapidly increasing.

*In terms of language selection, prototyping activities should not be arbitrarily constrained. Namely,
a contractor should have the latitude to prototype in any "reasonable" language as long as imple-
mentation of the system in the target language will be straightforward. Of course, the contracting

agency should be able to substantiate the rationale behind the choice of language during the pro-

totyping or system definition phase. Although flexibility in language selection is advocated at this
point, it is not unreasonable to expect that DOD will in the future explore the standardization of

a common Al language.

Flexibility also implies that the model should not inhibit growth of a larger system. In addition,

the model should be able to accomodate future technology standards. For example, consider the
standardization of COMMON LISP as a prototyping language.

A KBS software development model should also provide flexibility in terms of contracting mecha-

nisms. The number of prototypes generated and the time spent in the system definition phase may
be difficult to predict at the outset.

2.1.4 Compatibility

*2.1.4.1 System Development

It must be recognized that KBS's may simply be components of a much larger system. Conse-

quently, the development of a model must be able to be tied to the system engineering process.

This process is one which starts out by identifying the component parts of a system through sys-

tem engineering trade-off studies and, once defined, attempts to ensure all components do in fact
work or interface with each other. Compatability between an Al system component and the more

conventional hardware and software components is essential to the overall system development
process.

Compatability is also necessary during the system integration process. At some point during the
development cycle for a system, components need to be integrated and tested as a total system. It

N: 2-4

%
%

2.2 Composition

is important that this interplay between system components and the KBS model exists and that

there not be incompatabilities that inhibit the development process.

2.1.4.2 Conventional Software Development

Many large system developments include a combination of knowledge-based as well as conventional

software components. In fact, PAR Government Systems Corporation has indicated that, of the

intelligent decision aids they have built within the past five years, the knowledge-based software

components comprised approximately 30% of the entire system. The rest of the systems were made

up of a combination of databases and conventional support software.

As a consequence, an adequate KBS development model must mesh well with its conventional

counterpart, DOD-STD-2167. Although KBS are not constructed in a top down manner, the

development process can still be described in terms of phases. These phases should be identified

so as to provide similiar checkpoints and milestones as the concurrent conventional effort if we are

to maintain compatability. In this way, the project as a whole can be effectively and consistently

managed with visibility and control over both types of software.

* In addition, the KBS model needs to provide hooks to the conventional software from a communi-

'cations standpoint. Specifically, interface review meetings and documentation must be called out

to ensure proper development at the system level.

2.2 Composition

The composition of a KBS software development model must reflect the actual process employed

by the developers in the expert system community as well as satisfy the needs of DOD in terms of

*contracting for such systems. In general, KBS developers have had little control imposed on their

efforts. On the other hand, DOD software contracts are tightly controlled, using a standard such as

2167 to define activities, products, reviews and baselines. Consequently, a KBS model that is best
suited to both parties might be characterized at the extreme as a tender balance between bipolar

forces.

The following subsections generally describe the KBS software development process and identify

* pertinent DOD concerns, such as documentation needs, configuration management and testing.

.J. These concerns are reflected through various DOD policies governing the acquisition of software

and'through the current DOD standard for software development, DOD-STD-2167. The discussion

z . provides the basis for the model definition presented in Section 3.

S2.2.1 Activities Identification

The development of a KBS appears to follow three major processes:

* a system definition stage;

e a system implementation stage; and

1;
2-5

. -. 1'.- P A -

2.2.1 Activities Identification

e a system operation stage.

Each stage is examined in the following three subsections. Figure 2-1 provides an overview of the
major activities identified in each stage.

2.2.1.1 System Definition

The system definition stage is characterized by high iteration as incrementally developed software
is proven acceptable in the form of regularly demonstrated prototypes. The process involves man-
agement planning closely intertwined with knowledge engineering as a means to: plan the software
engineering strategy; find and extract information from a domain expert; and represent the infor-
mation in a knowledge base. A high level description of the process follows. Refer to Volume I for
a more detailed accounting of specific aspects of knowledge engineering.

The management plan accounts for the identification of problems, participants, resources, goals and
approaches. The initial identification of a problem may not necessarily represent an appropriate
expert system task or may include a scope that is too complex to implement in the first version.

0This may result in an effort that is plagued with unsolvable design problems, that costs more than
it saves or that is unacceptable to users. Therefore, precautions should be undertaken to insure that
the problem reflects a true 'expert system' task that is reduced to a manageable, but reputable size.
Some key areas where expert system development might help include situations where[17, Harmon
and King]:

, solutions to problems are based on subjective, human expertise;

* key individuals are in short supply;

* large team efforts are needed to solve small performance tasks;

* performance degradation occurs because one individual cannot grasp the entire issue;

. a system performing a portion of the total task would be useful;

* large discrepancies exist between the best and worst performers;

>* • incorrect or nonoptimal results can be tolerated;

* a lack of human resources compromises corporate goals; and

* competitors can resolve a given task better.

In contrast, problems that are stable, and lend themselves to numerical solutions should be devel-
oped through conventional methods.

Upon identification, participants in the expert system development process (a selected group of
knowledge engineers, experts, users and customers) assess and subdivide the problem until a

* formidable, but manageable problem is defined. Qualifications used to select an expert must
be specified. Some criteria for a choice are the expert's general acclaim, reputation, ability to

2-6

S%
% %~ J. ..

2.2.1 Activities Identification

System

Definition

0 Define problem
• Plan software engineering strategy
* Prototyping

- Knowledge Acquisition

- Knowledge Representation
- Informal Testing

System
Implementation

0 Coding
" Knowledge Base Refinement
. Informal/Formal Testing
0 Customer Acceptance

System
Operation

* Delivery
* Installation
, Maintenance

U,

Figure 2-1: Top Level View of KBS Software Development

2-7

4, %P

2.2.1 Activities Identification

communicate, availability, and at a more objective level, perhaps, the expert's level of training,
years of experience and position in the company. Once the problem and participants are identified,
resources to support the system are determined. Some resources include time commitments from
experts and knowledge engineers as well as a definition of the necessary hardware to include know]-
edge engineering tools designed for rapid prototyping of expert systems. The system goals and
approaches refer to management's decision on how to control the knowledge engineering process,

including a schedule for prototype reviews. Management also determines how and where to imi-
plement configuration management, defines what kind of quality controls are needed and specifies
how the system can best be supported and maintained.

The knowledge engineering process involves knowledge acquisition and representation with the
ultimate goal of producing a prototype. Acquisition of knowledge is based on the interaction
between the knowledge engineer, who examines different techniques on how to effectively extract
information from the domain expert. The effort revolves around the establishment of a method
to understand the problem and to characterize the data and possible problem solutions in the
knowledge base.

Knowledge representation is closely intertwined with the knowledge acquisition process. Through-
*out knowledge based system definition, the two steps are revisited repeatedly in an effort to define

and then refine the knowledge base. During knowledge representation, the knowledge engineer
attempts to map the knowledge acquired into a formal representation. The nature of the domain
knowledge will likely affect the decisions relative to purchasing an expert system shell, a tool which
facilitates the knowledge representation process. Once the information is formalized, informal test-
ing by means of a prototype review which may include members of the user community, maintenance
organization and the contracting agency allows for a validation of the data and performance.

"- The prototype is successively refined after each demonstration or review. In some cases, the proto-
type may even be thrown away. Nonetheless, each prototype fulfills a purpose in identifying errors
such as invalid knowledge, incorrect inference rules and/or inaccurate control strategies. Another
cycle through knowledge acquisition and representation corrects the errors, allows for necessary en-

hancements, brings up other problems to resolve and helps the knowledge engineer determine the
desirable performance qualities of the system. At the end of each prototype review, requirements
and test plans should be refined or updated.

2.2.1.2 System Implementation

With the problem well defined, the implementation process begins. In this process the "production-
quality" system is implemented in the target environment, which may be different from the pro-
totyping environment. In some instances, the prototype may have been developed on the target
hardware, making it possible to evolve the prototype into the operational system. The decision
to evolve the system depends on the properties of the prototype (i.e. the software may not be
well structured or maintainable). In addition, the feasibility of evolving the prototype depends
on the level of modifications necessary in order to satisfy the system's requirements. Namely, the
implemented system will need to be more robust than the prototype in terms of cases covered and

the ability to reason with uncertainty. These kinds of enhancements will effect the knowledge base
and the inferencing mechanism.

2-8

%%

e......-

2.2.2 Documentation Needs

In addition, error handling, which is not a major issue during system definition, must be considered
during system implementation. Efficiency concerns, in terms of memory utilization and run time
response, present another set of implementation criteria that must be addressed.

-. If the target environment is incompatible with the prototype, the system must be reimplemented.

The system implementation process is somewhat iterative by nature, although not as iterative as the
system definition process. As the system is implemented, the need for knowledge base refinements
become apparent. As the knowledge base changes, the system undergoes informal testing which
can uncover deficiencies that need to be re-implemented. This process continues until the system
is ready for formal testing and customer acceptance.

In systems where an interface to conventional software exists, system integration must occur. This
effort can be accomplished near the end of formal testing. With an operational and integrated
system built, the project can transition into the system operation process.

2.2.1.3 System Operation

The bridge to system operation occurs with formal customer acceptance of the final system based
.. - on the test approach established during the system implementation stage (see Section 2.2.4). The

J.9 main goals of system operation revolve around delivery and installation of the final system, and the
establishment of firm maintenance capabilities to enhance the system or correct errors and deficien-

- .- cies. Enhancements to the system may involve a pass through the highly iterative system definition

phase to acquire and represent the new knowledge and/or a pass through the implementation phase
to update the system. For changes to the delivered system, configuration management and quality
control should continue to be active and updates to documentation and extensive testing provided
to establish a sound system for the next delivery.

2.2.2 Documentation Needs

Along with the delivered code, substantive software documentation is an essential component of a
high quality, supportable system. In addition to defining the software, documentation provides a
means for customer/developer communication throughout system development. Scheduled releases
of pertinernt documentation reduce the risk of building an unacceptable system.

6, A KBS development model must require the submittal of a specified set of documents to support the
delivered system. The following subsections describe a number of documents designed to facilitate
maintenance of a KBS. These documents are also conducive to building the right system the first

2.2.2.1 Management Plans

Management plans are effective when written during the project proposal stage or early into the
%4p A, software development effort. From a management perspective, important issues to address are:

* how/when the software will be developed;

.. ' 2-9

N~ %1 AJj /.A ' , .~ % %.. %
...

W. . " W - - - - -

2.2.2 Documentation Needs

* what software environment will be used (hardware/software);

..- * how the domain expert(s) will be chosen and how much time he/she will be committing;

* what coding standards will be followed;

* what and when documents will be delivered;

* what and when reviews will be held;

* what configuration procedures will be employed;

* what software quality measures will be followed;

9 what testing criteria will be employed; and

* program schedule and staff organization.

Management plans can be useful working documents for both the customer and the developer.
By describing the software development methodology, the customer has visibility into the evolving
product. By knowing the proposed strategy up front, feedback and suggested changes can be offered

O- by the customer.

Management plans also provide the customer with control mechanisms. Namely, the proposed
. .- schedule allows the tracking of progress by attendance at major reviews and evaluation of product

deliveries against the stated delivery dates. The likelihood of developing a successful system is
"-" enhanced by allowing the customer to become involved.

At the same time, management plans are also of benefit to the developer. In the process of
- developing these plans, the project manager has defined the means by which the project will be
. .run and internal progress measured. In addition, the plan defines the development environment

and the team needed to implement the system and reach project goals. A system would surely be
doomed for failure without planning of this nature in the early stages of a project.

2.2.2.2 Engineering Documentation

Engineering documentation provides a roadmap for the system to be built by specifying system
requirements and providing designs and system implementation details which greatly facilitate

* operation and support efforts.

The following information should be included in the specified set of deliverable software documen-
tation for a given project.

2.2.2.2.1 Requirements Definition At the sta?'of a project, an initial set of requirements
establishing the broad goals of the system is generated. Because problems suited to KBS resolution
are inherently ill-defined, the requirements initially listed may be incomplete or even inaccurate.
Nonetheless, they offer a starting point from which the system definition process can begin.

During the system definition stage, requirements are refined as prototype generation provides in-
sight to the problem. At the completion of system definition, the final set of software requirements,
presumably complete and accurate, must be documented. Software interface requirements should
also be included in the documentation.

9 .

2-10

0,

2.2.2 Documentation Needs

2.2.2.2.2 Functional Design Descriptions Following the iterative system definition stage,
the developers should have insight into how they propose to solve the problem at hand. Specifically,
the developers should know how the solution breaks down in terms of which elements of the problem
are best solved by hardware, KBS techniques and conventional software techniques. At a functional

level, these components as well as interfaces can be defined. The result is a document that presents
a conceptual design of the system.

Knowledge acquisition and representation are key activities of the system definition process. Through-
out prototype generation, ideas concerning the best and most natural way to represent domain

knowledge are developed (i.e. devising the vocabulary or epistemology in terms of which the
"rules" are written). At the end of system definition, the knowledge engineers should have strong
perceptions concerning knowledge representation and inferencing mechanisms. A functional design

document could also present this culmination of ideas including justification for the recommended
knowledge base and inference engine designs. Presenting the whys behind the design is useful for
several reasons:

, The risks associated with the chosen approach as well as the discarded approach(es) are
* identified for consideration by the customer;

* The information provides the customer with a better technical understanding of the approach
recommended for system implementation; and

Knowing why decisions were made often facilitates the maintenance/support cycle of a system.

2.2.2.2.3 Product Specification During system implementation, a software description doc-
ument should be written to annotate the code at both the modulc and unit levels. This document
Is considered to be an as-built description of the system.

A product specification should also completely decrihc th- know ,-ch ncluding the knowledge
source(s). Suggested paragraphs include a description of the knowledge base in terms of its contents,

strcture/architecture and relationships between knowledge and/or other software components. For
example, if one were to change a rule, what other software entities would be affected?

The knowledge representation format, such as rule or frame formats, should be defined.

S.. A complete description of the inference engine, including inheritance properties, constraints, inexact

reasoning, truth maintenance, explanation capabilities and the like should also be part and parcel
to the product specification. Because the explanation capabilities of a system trace the reasoning
paths that have been followed in reaching a conclusion(s), they play an important role in system
maintenance and support.

2.2.2.3 Test Documents

Following the system definition stage, the project team should specify their plans for informally
and formally testing the system. Because KBS are nondeterministic by nature, the criteria for

evaluating whether a response is acceptable or unacceptable must be established a priori.

,'

2-11

.%

, -P -: .' .J ..w r%-J W W I . .7 -' C' -I -. V 1 V . ''- . (. ; -s .,-, .. p ' *rW r-rt w r w-. r . ,

2.2.3 Configuration Management

Based on the final requirements specification and experiences gained through prototyping, the
developers should be able to define a class of test cases suited to system evaluation. For example,
consider a systen that diagnoses upper respiratory disorders. A class of test cases might include
the plan to check for the diagnosis of a common cold, an ear infection, strep throat and tonsilitis.
This type of information can be included in the testing section of an updated software development
plan.

Nearing the end of system implementation, a test description document could be used to specify
particular test cases. For example, from the class of test cases stated above, specific inputs, intended
to lead to the kinds of maladies mentioned, can be established.

Lastly, a document recording the testing results for all cases specified should be required.

.,2.2.2.4 Operational and Support Documents

Prior to installation, the contractor should deliver documents pertinent to operation and support of
the system. In terms of operation, manuals that define the procedures for operating the computer
system, as well as the software, should be required.

Support documentation should also be submitted to facilitate maintenance of the delivered com-
puter system and the software.

2.2.3 Configuration Management

An important aspect of any software development effort is the management of software changes.
Configuration management refers to the concept of controlling changes to a previously defined
program to demonstrate that the original definition of the software was modified appropriately.
(;enerally, the unit of work controlled is a subsystem referred to as a Computer Program Config-
uration Itern (CPCI) or Computer Software Configuration Item (CSCI). As previously described,
the DOD has established three major baselines to govern the control of software throughout the
life cycle:

* the functional baseline: produced during Pre-Software Development;

* * the allocated baseline: which occurs after Software Requirements Anal, sis; and

. the product baseline: which follows CSCI Testing.

. In addition, internal configuration management of software should be maintained by the contractor.
The configuration mnanagemeit for expert systems follows the same general pattern of control
st ipulated in the standard with a major difference regarding allocated baselines.

,,iven the three ,,rieral steps identified as an approach to expert system building: system defini-
tion, system imf ementation and system operation, the functional baseline falls at the outset of

% system definition prior to prototype development; the allocated baseline may occur at the end of
.~ system definition and the product baseline appears at the end of testing and reviews in system

implementation. The iterative nature of the system definition stage complicates the configuration

2-12

z 44'..
.r

K"w W.7 -i WW

2.2.4 Testing Approaches

management process with regard to the allocated baseline. Requirements are not established and
fixed at the outset as in conventional software development. They are progressively defined and
refined through successive prototype development until the contracting age, y, satisfied with the
defincd requirements, finalizes the review process and agrees that the system can be implemented
based on the requirements. Each prototype represents a set of requirements which may serve as the

foundation for the final implemented system or serve as a ste)pinig stone to the next set of require-
inents. Therefore, a method to track software changes between prototypes must be available. One
solution is to maintain an evolving allocated baseline that exerts a predetermined level of control
over each prototype. Since prototype changes are often stimulated by testing new cases, it may
be wise to tie changes in the "rules" to the cases that triggered them. Once the final prototype
is determined, the allocated baseline can be finalized. An evolving baseline provides a solution
to the situation where a project meets with unexpected circumstances such as a termination due
to insuficient funds or a decision to base the implemented system on the previous prototype be-
cause of financial limitations, etc. Internal configuration management remains an important aspect
throughout system implementation and until the product baseline is established.

k.notther area of configuration management concern is status accounting. A means to track infor-
mation in a document or in a file is essential to a project's ability to maintain a status record on

0 the project at all times. The data should be collected as part of the configuration management
plrocess.

2.2.4 Testing Approaches

A KBS software development model must provide an approach for testing system accuracy and
utility. The testing and evaluation process can then be used as the basis for releasing the system
to a fielded or operational environment.

Traditionally, knowledge based systems developed to date have undergone only an informal eval-
uation process with few systems actually fielded. As a system is being developed and successive
prototypes built, the domain expert is repeatedly conducting informal evaluations. Static evalua-
tions generally occur wherein the system knowledge base is checked for consistency and complete-

ness relative to the expert's own domain knowledge. Dynamic evaluation may also occur wherein
the system's line of reasoning on a specific test case is compared with the expert's own reasoning
process. The knowledge engineer works closely with the domain expert to refine the knowledge

_• base with the evolution of each prototype system. Figure 2-1 presented a broad view of the KBS
development process. It is during the system definition phase that the notion of informal testing
occurs as the prototypes evolve.

Once system definition has reached a mature state, the requirements for the system begin to
stamlize. At this stage, the system goals can be established with a high level of confidence. The
goals should include the type of assistance required by the system (i.e. intelligent assistant vs. an
autonomous system) as well as the minimally acceptable accuracy level. Given the system goals,
the domain expert and knowledge engineer can begin to define a class of test cases to which the
completed system should correctly respond.

%: -"Following system definition, the next major stage in the development process is called systen
. tmplemtentation as shown in Figure 2-1. It is during this phase that a system can be implemented

2-13

...
'%%-", .. ~~...............-- € " ."' ,.|

:: ' :: ::: ::: ::: :::::::::::::::::::::::: ,'-- .:, .:.-:. : .. .

*O 2.2.4 Testing Approaches

according to the most recently postulated set of requirements or goals. The system as implemented
may differ from the latest prototype in terms of language, target machine, efficiency considerations
and the like. Prior to releasing the system for operational use, it is likely that the customer will
require a formal testing procedure.

In addition to customer acceptance testing, wherein the system must give a rigorous accounting
of itself, there are several other reasons that support a formal testing process. Namely, user

"'., confidence in the system is largely based on credibility which can be demonstrated via formal test
procedures. In addition, for systems where maximum accuracy is critical, a formal test process can
be used to flesh out errors which may not be uncovered during informal reviews conducted by the
domain expert and knowledge engineer. Lastly, legal concerns may surface if a system has not been
thoroughly tested with documented results.

A formal test approach that could be used in the validation and verification of a knowledge based
system i- shown in Figure 2-2. As indicated, at the end of the system definition phase, a class
of test cases can be developed by the domain expert and knowledge engineer on the basis of the
finalized list of system goals.

The specific steps that may be involved in formally evaluating an implemented system are shown
in Figure 2-2. The first step in the formal process may be to introduce a sense of objectivity

-"" by obtaining an independent expert(s) to test the system. Because domain experts are generally
difficult to find and usually extremely busy people, whether or not to seek an independent expert
may depend on the accuracy and/or security requirements of a given system. If a decision is made
to procure an independent expert(sj, one should review the qualifications for defining an expert
that have already been established as part of the management planning activity. One should also
keep in mind that the independent expert(s) should use roughly the same reasoning approach as
the original domain expert to avoid total chaos during the evaluation process. If an independent
expert(s) has been contracted, he/she can begin to derive a set of specific test cases from the class
of test cases previously generated. Otherwise, the domain expert proceeds with this task as well
as the other tasks described to be the responsibility of the independent expert in the following
paragraphs. The specific test cases can then be incorporated in the test description document.
Once complete, the customer should review and approve the test descriptions which will form the
basis of the acceptance testing activity.

When the system has been fully implemented, actual testing can begin. The independent expert(s)
should initially conduct static evaluation to compare the system knowledge base with his/her own
and identify any problem areas. Dynamic evaluation can proceed next whereby the system's line of
reasoning and conclusions on each specific test case are compared with the independent expert(s)
own thoughts. Differences that may arise between the domain and independent experts must be

*' resolved. If applicable, errors should be corrected and the system retested. As a consequence, the

static and dynamic evaluation steps may be revisited a number of times. When a resolution cannot
be reached amongst the experts, the decision may need to percolate to a managerial level wherein
the arguments from both sides are weighed, especially as they pertain to the system goals.

-- l. Documentation of the test results should be an ongoing activity. Once differences between the
experts have been resolved and the customer agrees that the system meets the predefined goals,
he/she should sign off on the system. At this point, the system can be delivered.

2-14

", . . ., , J, .. F., . -... '" ' ' , . ,'" . ,, ,, -% S%
e. o.-1 5

N1

2.2.4 Testing Approaches

** System System I System

Definition Implementation OperationA

Finalize
0.0 Requirements

Establish
Class of

Test Cases

Consider
Independent

V1.' Expertise

Establish
Specific

Test Cases

0
0

Implement
System

Evaluation

'Formal Evaluation
~testing

iResolve

Dfferences

Customer
- -- -- -- -- - -- - - - - - - - - Acceptance

Figure 2-2: KBS Formal Test Approach

d 2-15

N N-

'5% % ~ %. %S%'.* .-. %%

2.2.5 Quality Evaluation

2.2.5 Quality Evaluation

Software quality evaluation is a continual process which occurs throughout software development
to help organizations minimize the impact of problems discovered late in a development elort.
As DeMarco states: "the major determinants of quality are for the most part already in the
software before testing begins." 110, DeMarcol Although quality can be defined in a number of
different ways, some of the purposes for quality metrics reside in ensuring that delivered software
complies with contract requirements; providing management with visibility into software that is
periodically assessed via reviews and audits; and applying metrics to software products throughout
a software life cycle to help with identification of the final product's quality level or the detection of
quality-related problems. The definition of software quality is open to many interpretations and is
essentially defined by the person(s) who must determine the level of quality for a particular system.
Nonetheless, some of the major quality concerns seem to revolve around the following three factors:

- performance quality factors which deal with the software's ability to perform or to degrade
-" v gracefully when raced with error occurences that affect the system's functionality. Some

quality related areas included in the evaluation may be:

- usability;

- reliability;

- survivability;

- efficiency; and

- integrity.

* design factors which refer to the ability of software to work properly and as determined by
the requirements. Areas considered to affect the design quality of a system may include:

- correctness;

- maintainability; and

- verifiability.

* adaptation factors deal with the software capacity to satisfy requirements and to allow for
". 'extending or expanding capabilities and/or adaption to other environments or applications.
% Specific concerns are then:

- expandability;

- flexibility;

- interoperability;
. -- portability; and

reusability.

Each of the major factors and areas identified can be interpreted in any number of ways to accomo-
date a variety of different quality assurance programs. The following section attempts to identify
key areas where quality should be examined throughout expert system development with respect
to performance, design and adaptation factors.

2-16

*~~~~ % %. % ~.W ~
ll,, • .".. ,.'. ". ." ' ,,. -.- .,,,-". ',, ' ''.. " ". .. .-,' -- ,,- ,- '.." ,,., ,',._, .-. , , -,. . . _. . .-_ - ,
• ""."."," "" g " . - ,-"" " r _J. '# '. % .'w .. '_', ' % - -% ." ." # ." "..' .'. ".3

,

2.2.5 Quality Evaluation

One of the major functions of an expert system is to perform in the capacity of an expert who has
shared his/her knowledge with an engineer who incorporates the information into the knowledge
base. To provide the performance capabilities necessary to the survival of the system, performance
quality measures in terms of usability, reliability, survivability, efficiency and integrity should be

. ' 'determined.

A system's success may depend upon the user's acceptance and use of the final deployed system. An
advantage of KBS development revolves around the fact that the system is continuously reviewed
and updated according to the user's response and expectations. Therefore, quality in the system
relies on the ability to accurately assess and determine user needs and build each prototype with
efficiency and usability as a major objective.

The system's reliability may be based on each expert's ability to adequately relay and test infor-
mation together with the knowledge engineer's talent in designing and integrating the knowledge
base. Therefore, proper selection of the expert(s) and engineer(s) can affect the system's ability to
reflect quality in the information process.

An aspect of survivability is the system's ability to degrade gracefully. Many expert systems rely
on continual updates to the domain knowledge. Therefore, expert systems should accomodate some
type of modification and maintenance function to allow for planned quality improvements.

Another aspect of efficiency relates to the system's ability to appropriately reflect the expert's
knowledge. Continual informal quality evaluation of the knowledge base from each prototype can
be done by a second domain expert who should be chosen for consistency in approach to the primary
domain expert. The expert should observe the knowledge acquisition process and objectively qualify
the information content and the inference engine according to a predetermined standard.

The system's integrity depends on the fact that only key experts will exercise the right to update
the domain knowledge. Since the information in the knowledge base reflects a chosen expert's
knowledge, the person(s) who have maintenance access to the information should be limited to
professional individuals qualified for the task.

The incremental approach to expert system building, build a little, test a little, introduces an
additional consideration when determining the desirable design quality factors in areas such as

correctness, maintainability and verifiability. The correctness of a system may be based upon the
Ssoftware's ability to reflect and represent system specifications. Since requirements are continuously

* rewritten and demonstrated through a prototype that represents the system's capabilities, the
* system's correctness should theoretically be easy to prove. However, an area where the correctness

-'" of the system may be difficult to ascertain deals with the accuracy of the domain knowledge. If the
U,' domain information cannot be exact, the preciseness of the system becomes a debatable quality

issue which must be settled based on the desirable characteristics of that particular system. One
way to offset the inability to obtain exact domain information is to provide for verifiability through

. "dynamic evaluation" of the system. The maintainability of an expert system is also a major quality
consideration throughout the design phase. The system should demonstrate a capacity to allow for
continual updates and maintenance to the dynamically changing knowledge base.
Expert systems are expected to develop and grow beyond the final deployed system. Therefore,

4adaptation factors such as expandability, flexibility, interoperability, portability and reusability
should be researched to determine a system's quality expectations. Flexibility and expandability

2-17

6r J

%% q ', U, ~

2.2.6 Contractual Mechanisms

must be provided throughout system definition and operation to accomodate the rapid changes in
requirements due to refinements, enhancements and/or corrections. The highly iterative nature
of prototyping is one convenient tool that can be used as a methodology to support flexibility
by encouraging incremental system development. The same prototyping tool can improve the
expandability of a system through the provisions of a mechanism to allow for increased software
capabilities and/or performance.

Another area where quality is required concerns an expert system's interoperability, which includes
the ability to couple with software from another system. Throughout the development effort,
attempts should be made to guarantee that the knowledge-based and the conventional software
development effort interface properly. In addition, precautions may be necessary to guarantee that
the scheduling needs of each software effort complement one another.

Other areas where quality may be necessary concern the portability of the system and the reusabil-
- ~ ity of software for other applications. Frequently, expert systems are developed in a very rich

environment. The target environment should be comparable where necessary and vice versa. With
respect to reusability, an important work product is the epistemology developed for the domain; it
may be reused for other tasks within the same domain.

* In summary, quality evaluation is a continuous process whose primary orientation is to build quality
into the product. A well defined process model should reflect this idea and recognize that quality
attention is something that cannot be left until product delivery. The addressing of performance,

-. design and adaptation issues throughout development will provide the quality evaluation necessary
to meet DOD needs.

2.2.6 Contractual Mechanisms

The process of defining a contract for the development of a KBS may require some creative thought.
Because the duration/intensity of the system definition phase is difficult to predict, cost estimates
may not be very reliable. Specifically, given an initial set of ill-defined requirements, it is difficult
to estimate the number of prototypes that will be developed in the process of understanding the
problem and postulating a final set of requirements.

Several of the case studies presented in Volume I represent contractual agreements whereby the
- delivered product was a prototype. In these situations, the contract terminated at the end of the

* system definition stage. For complicated systems, this approach might suggest the idea of multiple
awards for the system definition stage of a project. At the end of this stage, the contractor with
the best demonstrated prototype and set of proven requirements may be chosen to continue on with
system implementation.

The Inference Corporation case study presents another approach. In the contract with American
Express, Inference was to build a system that complied with a set of predefined criteria relative
to schedule and cost. There was no specific direction in terms of the amount of time or money to
be spent during a particular phase. Status was tracked by interim progress reports and prototype
demonstrations. Payment was essentially based on a cost basis and, if the end system met the

* predetermined goals, a balloon profit payment was to be made. This type of contractual strategy
. provides a profit incentive for the contractor and may enhance the probability of developing a

successful system.

2-18

%.",-, .- , -%. "

.3~W r/ .1 U

2.2.7 Interface to Conventional Software

In the DOD contractual area, there is a definite leaning towards the issuance of fixed priced con-
tracts. In addition, there is also a tendency in some application areas to buy the total system under

a single contract (particularly small systems) rather than develop the system in stages (which is
usually the case with large systems). In the KBS environment, we have a case where large system

. procurement policies probably should be followed to buy small systems. The planning for system

definition is about all that can be handled when only some vague concept and set of incomplete
requirements have been defined. This is typical for the beginning of KBS System Definition.

In the area of contract types, either a Cost Plus or Fixed Price Level-of-Effort is all that could

be reasonably used initially. This is based on the inability to predict how many iterations of the
System Definition process will be necessary.

Once the system has been defined, it would be reasonable to use a Fixed Price contract. The
complete requirements are in hand and a reasonable amount of prototyping completed to accurately
plan the implementation and cost of the effort.

2.2.7 Interface to Conventional Software

In the future, DOD systems will include large hybrid systems comprised of both conventional and

KBS software. The need for good interfaces between the different types of software will be extremely
important for system success. This means that along with the two different types of software
communicating with each other, the development teams working on the KBS and conventional
software components must also synchronize their efforts.

2.2.7.1 Phasing

In systems containing both conventional and KBS software, there will be a need to coordinate
the two development efforts. Certain milestones and reviews of the software will have to coincide.
Software development may have to be staggered. While waiting for software from one design

approach, a team could potentially work on an unrelated software component. In addition, a limit
to the time spent in the system definition phase of KBS software may have to be imposed, so that

software integration can be accomplished on schedule.

Certain sections of the system may have to be developed by both design teams. One such section
could be the user interface. If the user has to supply information to both portions of the software,

then one user interface which obtains both conventional and knowledge base information should
be developed. Each discipline must contribute to this effort so that the needs of their software is
properly represented and satisfied. A working document that could aid this process is a data flow

diagram, which would depict the flow of data between the user interface, controller module (if one
exists), and the KBS and conventional software.

The developers of the software will have to communicate and cooperate with each other in order to

meet schedules. Ideally, there should be mutual respect between the differing software disciplines. If
either of the development teams are uncooperative and difficult to work with, the integration of the

software along with the entire system's success may be jeopardized. One common goal to strive for
is that of maintaining and developing compatible requirements definitions. Joint meetings wherein

2-19

. - ---.-- --"-. . %-. " - " - - " - - - - - -

%*J A- -% A. me-I

2.2.8 Interface to Systems Engineering',

system requirements can be assesed as to their compatibility can facilitate the accomplishment of
this goal.

2.2.7.2 Operational Interface

The operational interface between KBS and conventional software is necessary in systems where Al
comprises just a portion of the system. In addition, KBS software may need to access databases
or conventional software functions. If interfaced inefficiently, the performance of the KBS could be

'F." greatly reduced. Recently, some developers of KBS shells have been adding the capability to access
'F... existing databases. This demonstrates the importance of the capability. Users of shells typically

do not want to duplicate information already stored in a database.

In hybrid systems, the standards of how data will be passed and controlled between software com-
ponents should be agreed upon early in the life cycle. If accomplished, both types of developers can
prepare for the interfacing and not have any "surprises" come integration time. As a consequence,
time will have to be set aside for the development teams to hash out the control and data issues.

Another operational issue involves the electronic interface between different computers. If the
system as a whole runs on more than one computer, then electronic interfacing is a critical factor.
In this situation the details of how the different processors will communicate must be addressed
and resolved to everyone's satisfaction.

2.2.8 Interface to Systems Engineering

In large system developments, systems engineering requirements are typically invoked contractually
by specifying MIL-STD-499 as a compliance document within a contract. This standard, although
it has not been updated since May 1974, continues to provide the system engineering precepts that
are important to an orderly system development process.

2.2.8.1 System Design Activities

The design activities commence with the conduct of mission analyses, progressing to system func-
tionality definition, and finally ending with the allocation of functions and subfunctions to hardware
and software components that make up the system.

Mission analysis output is the verification of existing system requirements or the development of
new requirements for the system. System operational characteristics, mission objectives, threat, en-
vironmental factors, functional requiremerts, technical performance and other factors are examined
to properly characterize the system prior to large scale design and development commitment. The

O. output of mission analysis may well provide a precise indication that KBS techniques will need to be
applied. These mission related characteristics provide the foundation and system characterization
from which to begin functional analysis.

Functional analysis includes analyzing and defining system functions and sub-functions, and iden-
"F'...tifying design alternatives for meeting mission needs. Trade-off and optimization studies are con-

ducted to ensure any resulting system meets mission requirements in a cost-effective manner. Dur-
ing this process, the KBS application may be further defined and refined such that the overall

2-20

p. .F' .F.F.s.
0, %N

% N
"ia * d' d *# "" , - ," .

1
, ," , d , , ,". ,'." .' , , , '. ' " p, • "- ,. ," '(" .€" *" , v ,Z

I

2.2.8 Interface to Systems Engineering

system design clearly identifies the division of labor between the KBS and conventional software
components.

The allocation of functions and sub-functions to hardware and software components represents the
final step in the system design process wherein discrete components are identified for further design
and development. This process is the subject of further definition and trade-off studies to ensure
that mission requirements can still be achieved in a cost-effective manner. At this juncture of
the development process, there should be a clear definition of where KBS are appropriate and the
division of the system into its component parts should reflect this allocation of functions. There

* should be distinctions between the various elements of hardware and software to include recognition
of KBS and conventional software application. This division provides the starting point wherein a
KBS model can begin to be applied.

2.2.8.2 System Interfaces

Two critical aspects of interface definition and control are intrasystem and intersystem compatabil-
ity requirements. The system engineering process must not only ensure compatible interface design
but must also be concerned with interface implementation to make sure that what is built will
interface properly with appropriate components. There is a need to have a continuous interface en-
gineering presence on all programs to insure that hardware works with software, software interfaces
with software, and that systems/subsystems interface with other systems/subsystems. It is critical
that KBS applications be a participant in this interface definition and implementation process. If a
KBS is to interface with some element of conventional software from a data or control standpoint,
this interface needs to be defined and then controlled throughout the development process, thus
providing assurances that all components will work when integrated and tested. The KBS model
developed must reflect, and not prohibit, this continuous attention to interfaces and provide control
at the same time providing flexibility for controlled changes.

2-21

% .% % % % /~V '"' // ~. *~ \

%
5

%' '

SECTION 3

Derived KBS Models

3.1 Initial Model Based on KBS Development Characteristics

Figure 3-1 presents a high level model, showing the relationship between the three major processes
_ of KBS software development. Iterative development is a common aspect of each process, although

it is most highly emphasized within the system definition process. Although implied by Figure
3-1, the duration of each process is not necessarily the same for every application. For example, a
very complex project or one with very uncertain requirements may require a considerable system
definition effort and a relatively small system implementation effort. Other variations are also

possible.

System
Definition

System
Implementation

Highly
Iterative

Less System
Iterative Operation

• Iteration

~As Needed

Figure 3-1: Top Level KBS Process Model

Figure 3-2 provides a more detailed presentation of the KBS process model, noting the significant
activities or subprocesses that occur within each major process. A detailed description of the model
is presented below.

3-1

*~ ~ %4
d

4 4
.*

%p0*..p'. .' .-.--

%1

%40

3.1 Initial Model Based on KBS Development Characteristics

* i Design DefnertionKnweg

TestmngeOperation

Lim

Syystte

%. System

"Ampemnt tegr
"-'Syte.,wInpe.n Operation

ignure3- PrototypeDP eDesin Generation K o eg. g

• Deg. ?I Kn~'edgli Prototypel ,B~
S Deino I einmn Delivery

:: /Evaluatin I I ln f r t al

".'
Instinl

" - -... - ------------
FormalIntl

Testing] Operation

"
and

System n
Support

Integration,

.M

.jFigure 3-2: Detailed KBS Process Model

3-2

3.1.1 System Definition

SystemN

I IRS

Conventional KBS
Subsystem Subsystem

4I

CSCI, HWC12 CSCr, CSCI1 HWCL.-

Figure 3-3: Sample Hybrid System Organization

3.1.1 System Definition

The System Analysis and Design activity noted within the dashed box in Figure 3-2 represents
the system engineering process that occurs as part of defining a system architecture to satisfy DOD

operational needs. The design activity consists of conducting analyses and trade offs between hard-
ware and software approaches in an attempt to optimize a cost effective system design approach.

The primary output from the system engineering process is a System Specification that defines the

system level performance and functional requirements as well as component hardware and software
requirements. When Al techniques are to be investigated and applied within a system, the Sys-

tem Specification would define the high level requirements for the KBS segment and include these
documented requirements in paragraph 3.4 of the System Specification (see Data Item Descrip-
tion DI-CMAN-80008A (draft), paragraph 10.2.5.4). These requirements would then be further

explored and refined via the KBS process model in Figure 3-2 and documented as a part of a
KBS Segment Specification. Figure 3-3 provides a sample hybrid system organization illustrating

both conventional and KBS CSCI's and Hardware Configuration Items (HWCI). In those cases
where the KBS is a stand alone system and not part of a larger system, the KBS development

process would ignore the System Analysis and Design activities and the preparation of a System

Specification and begin the definition process by defining a KBS Segment Specification.

The primary goal of the KBS definition process is to understand the problem at hand in order

3-3

, % ,

3.1.2 System Implementation

to establish a complete/accurate set of KBS requirements and design a system to satisfy these
requirements. The process is focused on the use of exploratory programming as a technique for
assessing project feasibility and exploring potential solution strategies. Specific activities that
comprise the system definition process include:

" Knowledge Acquisition

" Knowledge Representation

5$4/ " Prototype Generation

" Prototype Demonstration/Evaluation

As these activities are revisited, the problem becomes more clearly defined, and the software re-
quirements begin to emerge. Initially the requirements are dynamically characterized and subject
to change as the problem is better understood. At some point during the iteration process, the
requirements as well as the solution strategy begin to stabilize. Namely, as the requirements

- are evolving, ideas are formulated which address how the system can best meet the established
requirements. Ideally the user community should be involved in the activity of prototype demon-
stration/evaluation. User involvement in this activity greatly enhances the likelihood of developing
requirements which adequately address the problem at hand. Once the customer and the develop-
ers are satisfied that the requirements accurately define the right system, and that the prototypes
have suggested an appropriate system design approach, the system definition process is complete.

In some cases, the culmination of the system definition process may reveal that the system is best
implemented using conventional techniques. Prior to prototyping, however, the solution was not
apparent. If this is the case, development of the system can be managed using a conventional model
such as DOD-STD-2167.

Furthermore, the system definition process may be an end in itself. For example, a customer may
only be interested in a feasibility study for a particular problem. In another situation, a customer
may not want to commit to implementing a system until there is some indication of the level of
effort involved. At the end of the system definition process, the level of effort required to implement
the system can be more accurately defined since the requirements are better understood.

3.1.2 System Implementation

As indicated in Figure 3-2, the system implementation process follows the definition process,
assuming the goal is to build a full scale development system. The key activities that comprise this

second major process are:

. 9 Implementation

- Knowledge base refinement

?.A * Informal testing

• Formal testing

A

3-4

5....

. . - . '. '.. ." " .% %" __ -- -" -* " " %*." .-.. " % .. " -- " *
%"
" "" ' % " "-"t-% - -

3.1.3 System Operation

e System integration

During this process the system design is implemented in the target environment, which may be
different from the prototyping environment. If this is the case, the implementation process may
be significantly complicated by the need to consider new hardware and, perhaps, a different pro-
gramming language. In any case, the implemented system must completely address the problem at
hand. The system as implemented will certainly include more functionality than the prototypes

. generated during system definition. Namely, the knowledge base will likely be refined or augmented
to cover more cases than the prototype. In the process, the knowledge base becomes more robust,

P perhaps able to deal with uncertainty more so than the prototype.

The implemented system must also be equipped with error handling facilities, which generally are
not of great concern in the system definition process. As implemented, there may be a need to
consider program efficiency in terms of memory utilization and run time. Efficiency optimization
may involve modification of the knowledge base, inferencing mechanism and/or data structure
representation.

*, in general, i may be better to rewrite the entire system during the implementation process as
1 ,psed to evolving the latest prototype. If the target environment differs from the prototyping
.evironnient, rewriting the system will be a necessity.

Ns the system is implemented, informal testing occurs to assess the adequacy of the progressing
pro lict. Identified deficiencies must be corrected by revisiting implementation of the effected code
segnients.

Near tile end of the system implementation process, formal acceptance testing of the KBS software
is perforrmed for customer acceptance purposes. In hybrid systems containing both KBS arid
conventional software components, system integration is a necessary activity to bring all system
colnponerits together into an integrated environment and to test the system as an integrated whole.
'l'llw dashed box in Figure 3-2 indicates that system integration occurs only when there are multiple
I'lBS and conventional components to be integrated. Namely, a standalone KBS which does not
interface with any conventional software does not require integration. System implementation is
considered complete when the system is accepted by the customer,

3.1.3 System Operation

The system operation process involves the following activities:

* Delivery

" Installation

" Operation arid Support

Support may involve correcting deficiencies or enhancing the system. Major changes to the system
may call for development to cycle back to the system definition process to prototype the enhance-
remWts. Minor changes will likely cycle development back to the system implementation process.
System operation is siply a repeat of selected portions of earlier processes.

3-5

% % %F %

%-' -= "."."."

-V 3.2 Postulated Model Encompassing DOD Needs

3.2 Postulated Model Encompassing DOD Needs

Figure 3-4 presents a recommended model for guiding the development of knowledge based systems.
The model maintains the set of activities identified in the previous section and adds a set of products,
reviews and baselines. The additional elements shown in Figure 3-4 were primarily selected to
facilitate management of the developing system and ease operation and support of the delivered
product. At first glance, the model appears to be very similar to DOD-STD-2167 and the released
Draft of DOD-STD-2167A dated 1 April 1987. The reviews and baselines are essentially equivalent

to their DOD-STD-2167/2167A counterparts. It is primarily the products that differ, and hence
the interpretation of what is to be reviewed and baselined.

The following subsections present a more detailed discussion of the model using the DOD-STD-
2167A product descriptions (Data Item Descriptions) as the point of departure for the KBS prod-
ucts. This approach was chosen because the rewritten Data Item Descriptions under the Draft
2167A represent a more acceptable documentation set for KBS comparisons.

3.2.1 System Definition

System definition is a highly iterative activity wherein multiple prototypes are built in the process
-- .of understanding the problem at hand and developing a complete set of requirements. Despite the

uncertainties associated with a proposed system, the concepts of deliverable products, customer
*attended reviews, and baseline configuration mechanisms provide a means for tracking system

progress. The following subsections fully describe the System Definition portion of the interface
model presented in Figure 3-4.

3.2.1.1 Products

%Within the KBS definition process, the recommended products are intended to provide customer
visibility and control over this highly iterative process. In addition to the prototype itself, the
products as a whole capture the underlying philosophy of the selected development approach and
provide meaningful information which can be referenced long after the system becomes operational.
All documents shown in Figure 3-4 satisfy both customer and developer needs; none are intended

* to interfere with or hamper the development process. The specific documents required during
System Definition are proposed as follows:

e Preliminary Interface Requirements Specification;

* Preliminary KBS Segment Specification;

* Software Development Plan A;

e Interface Requirements Specification;

. KBS Segment Specification;

* Preliminary Functional Design Document; and

3-6

% A

3.2.1 System Definition

System System System
Definition Implementation Operation

Highly Less Iteration
Iterative Iterative As Needed

Prelimiinary nefe
Interface Rqieet

Requiremients
SSpecification

Preliinarry KBS Functional Functional TFunction-lI
KBS Sget Design Design Product

Segmient Segmctint Document DocumientSpcfato
SSpecificati pefcain (Preliminary) (I fpdiated) pcfcto

SotaeSoftware Source and odrcead Supdeaed
DevlopentDevelopment Object SOrc anOrctn

PlnAPlan B Code Code Code

-Y

Software Software
Test Test

Description/ Report
PrimaryProcedures

Document
or Code

Systei
Support

-Kff~ -ybDocumnents

included Systemn relimninar C'ritical Test
in foliowIn esign & Demn esign &- Dem esign & Dem Readtciness PCA
Primary I Review Revie Review(s) Review
DocumentFC

*Entered into
C

Baeieunc iona Product
0Entered Into /Allocated Developmental Configuration Baseline
0Development.

Figure 3-4: KBS Developer/ Customer Interface Model

3-7

VA~ VA % %A 'V

O-

3.2.1 System Definition

-"

* Software Development Plan B.

*: Each of these seven documents is described in the following paragraphs.

3.2.1.1.1 Preliminary Interface Requirements Specification (PIRS) The purpose of the

PIRS is to provide system interface information on the CSCI, HWCI and critical item level. If one
considers the KBS software itself as one CSCI, then information must be provided relating the
KBS CSCI to other system components. In a hybrid system, external interfaces to conventional
software CSCI's must be defined. In a cooperative KBS scenario, the manner in which one KBS
communicates with another must also be defined. User interface details should also be included in
the PIRS. Internal KBS interface information should be documented, if applicable.

Figure 3-5 presents a high level outline of the DI-MCCR-80026A (draft) data item description for
an IRS under DOD-STD-2167A (draft). The PIRS for a KBS or hybrid system consisting of both
knowledge-based and conventional software could follow this outline reasonably well.

Because of the possibility that the specific partitioning of the system is not always well defined at
the beginning of a program, many of the paragraphs for the PIRS may contain the notation "to be

determined".

Depending on the specific program at hand, it may be desirable to eliminate the PIRS as a separate
document. Instead, the salient interface information can be included as part of the Preliminary
KBS Segment Specification discussed below.

1. Scope
1.1 Identification
1.2 System Overview
1.3 Document Overview

2. Applicable Documents

3. Interface Requirements
f 3.1 Interface Relationships

3.2 CSCI-to-CSCI Interface Requirements
3.3 CSCI-to-HWCI or Critical Item Interface Relationships

S.- 3.4 Interface Documentation
4. Interface Qualification Requirements
6. Notes

Appendixes

Figure 3-5: Interface Requirements Specification Outline

3-8

0'

% %o % % orI

O A

4

3.2.1 System Definition

3.2.1.1.2 Preliminary KBS Segment Specification (PKSS) The purpose of the PKSS is
to provide a high level description of the proposed system, its envisioned segments and associated
requirements. Because the system itself is not likely to be well understood at the outset, the initially
partitioned system and stated requirements may only represent a best guess. Figure 3-6 presents a
suggested outline for the final KBS Segment Specification which can be followed in developing the
PKSS. At the initiation of system definition, many of the paragraphs for the PKSS will contain scant
information or even notations of "to be delivered". Nonetheless, with the information available, the
PIRS and PKSS present a starting point from which the system can begin to be defined using
exploratory programming and prototyping techniques.

A more detailed discussion of Figure 3-6 is presented in the KBS Segment Specification section
below.

3.2.1.1.3 Software Development Plan A (SDP-A) Software Development Plan A presents
management's strategy for reaching the following major goals of system definition:

" Generate a complete and accurate set of software requirements;

" Complete the bulk of the knowledge acquisition effort;

• Establish the method(s) of knowledge representation; and

" Develop design ideas to facilitate the system implementation process.

Because the outcome of system definition is unknown at this point, it is wise to postpone the de-
velopment of plans for managing the system implementation effort. Software Development Plan B,
discussed later in this section, covers the management and planning aspects of System Implemen-
tation.

The content and format of SDP-A can follow that of DI-MCCR-80030 (draft) under DOD-STD-
2167A (draft) reasonably well. A top level outline for this particular data item is shown in Figure 3-
7. Note, however, that several of the subparagraphs under paragraph 4.2 of DI-MCCR-80030 (draft)
entitled "Software Standards and Procedures" will need to deviate from the focus on activities of :

" Software Requirements Analysis;

" Preliminary Design;

" Detailed Design;

" Coding and Unit Testing;

" CSC Integration and Testing; and

" CSCI Testing.

Instead, many of the subparagraphs under paragraph 4.2 should be restructured to properly reflect
the activities that do occur during system definition. Specifically, the major activities listed below
are performed iteratively in the process of defining and refining system software requirements

3-9

%I

3.2.1 System Definition
N.

1. Scope

1.1 Identification

1.2 System Overview
1.3 Document Overview

1.4 System Definition
1.4.1 Missions
1.4.2 Threat

2. Referenced Documents

p 3. System Requirements
.. 3.1 System Domain

*O 3.1.1 Knowledge Base Coverage
3.1.2 Inferencing Mechanism

.4 3.2 System Modes and States
" 3.3 System Capabilities

3.3.X System Capability Name and Number
3.4 System Capability Relationships
3.5 Segment Allocation
3.6 Configuration Allocation

3.6.X HWCI or CSCI Name and Number (KBS software a CSCI)
3.7 Detailed Functional and Performance Requirements

3.7.1 HWCI
3.7.2 CSCI (KBS software = a CSCI)

3.7.2.1 Inputs
3.7.2.1 Processing

1,- 3.7.2.1 Outputs
*- V, 3.8 Government Furnished Property Usage Requirements
.

0 Continue with 2167A DI-CMAN-80008A (draft)

* ,3.25 Precedence

4. Qualification Requirements
5. Preparation for Delivery
6. Notes
Appendixes

Figure 3-6: KBS Segment Specification Outline

3-10

-'
-.-

i ,.,,r.,,'..-. .., , -.- .. . • . -. .. - . -.- -. • ... -. .. . " -. .. ,, .. -. . . . - - , ,,..' ,. ,. -. ..- ,. ... ,,. . .%. %,
r. .,.',,. .,,.,,.,,.,. -,, . ,?,,.,, ... ,, ,, -' ,."s. , ,..,,,.. , ,% ,,r . .-. • .. ' . ,'.,,. ,,, _ _,t.,, r,,,- ,. . .- ,,• ,- 'W ,""

3.2.1 System Definition

p

1. Scope
1.1 Identification
1.2 Purpose
1.3 Introduction
1.4 Relationship to Other Plans

2. Referenced Documents

3. Software Development Management
3.1 Project Resources and Organization
3.2 Schedule and Milestones

3.3 Risk Management

Continue with 2167A DI-MCCR-80030 (draft)

3.11 Problem/Change Report
4. Software Engineering

4.1 Resources and Organization - Software Engineering
4.2 Software Standards and Procedures
4.3 Engineering Research Activites
4.4 Non-developmental Software

5. Formal Software Testing
6. Software Product Evaluations

7. Software Configuration Management
8. Other Software Development Functions
9. Notes
Appendixes

Figure 3-7: Software Development Plan A Outline

3-11

* ** .'*. ***~ -.* "%

A% -=

3.2.1 System Definition

* Exploratory programming;

* Knowledge acquisition;

" Knowledge representation;

" Prototype generation; and

" Prototype evaluation.

During the discussion on knowledge acquisition, information pertaining to the selection of a domain
expert(s) should be included. The accessibility and availability of the domain expert(s) should also
be stated.

0 3.2.1.1.4 Interface Requirements Specification (IRS) As shown in Figure 3-4, the IRS
and KBS Segment Specification are scheduled for delivery sometime well into the System Definition
process. By this time, multiple prototypes will have been developed and the partitioning of the
system into components should be better defined. As such, the interfaces between the components
can be established and documented in the IRS. This documentation effort will essentially consist
of updating the PIRS according to the outline shown in Figure 3-5.

Depending on the specific program, it may be preferable to eliminate the IRS as a separate doc-

- ~ument. Instead, the interface data can be included as part of the KBS Segment Specification
- .discussed below.

3.2.1.1.5 KBS Segment Specification (KSS) The KSS provides a description of the pro-
posed system on an overall as well as a CSCI/HWCI level. The documentation effort involves
updating the PKSS according to the outline shown in Figure 3-6. Notice that the outline shown
basically follows the format of data item DI-CMAN-80008A (draft) under DOD-STD-2167A (draft).
The differences lie in Sections 3.1 and 3.7 shown in Figure 3-6. In Section 3.1 of Figure 3-6,
the contractor must describe requirements associated with the system domain. Specific elements
include knowledge base coverage and the inferencing mechanism. Namely, what aspects of the
overall problem will be addressed by the knowledge base itself? In addition, from the prototyping

*. that has been done, what is the recommended strategy in terms of inference processes?

Section 3.7 of Figure 3-6 presents functional and performance requirements on the CSCI/HWCI
. 4 level. Rather than place this material in a separate document, such as the Software Requirements

Specification under DOD-STD-2167A (draft), we recommend inclusion in the KSS. One should

consider the KBS portion of a system as a single CSCI for which software requirements would
be stated in terms of inputs, processing, and outputs. Subsections under Section 3.7 should be
included for each KBS that comprises the total system.

3-12
@

.- d.%*~~~%~.*54 "%r .. r.. ~ - *. *

* ' ~ A ~ ~ 0~ '

3.2.1 System Definition

3.2.1.1.6 Preliminary Functional Design Document (FDD) At the end of System Def-
inition, multiple prototypes have been built and many ideas have been generated in terms of the
system design to be implemented. These ideas along with the rationale behind the approaches
selected should be captured in the preliminary Functional Design Document (FDD). A suggested
outline for the preliminary FDD is shown in Figure 3-8.

The preliminary FDD presents a conceptual design of the system in terms of the target environment.
The partitioning of the system into specified components should be documented and substantiated.
The preliminary FDD also contains a section describing the knowledge base. Near the end of System
Definition, the knowledge engineers usually have developed strong opinions concerning knowledge
representation. The conceptual design of the knowledge base as well as the justification behind the
design should be captured at this point. Furthermore, if the knowledge base has been partitioned
into subsets of knowledge with differing methods of syntax and taxonomies employed, a thorough
description should be provided for each subset.

Design information concerning the inferencing mechanism chosen is also contained within the pre-
liminary FDD. If the knowledge base has been partitioned, a description of the inference process
used to navigate through the subsets of knowledge should be provided.

Conventional software components should be defined and substantiated (i.e. why did the contractor
choose conventional techniques over KBS techniques for this particular system function?) Interface
descriptions amongst the system components should also be provided. In addition, the use of
off-the-shelf software should be specifically identified as part of the design solution.

Given the information it contains, the preliminary FDD can be thought of as a high level design
document from which System Implementation can begin.

3.2.1.1.7 Software Development Plan B (SDP-B) Once the System Definition process is
complete, requirements and design ideas pertinent to the final system should be well established.
Not until this time is the contractor able to plan for the System Implementation process. In
documenting the management strategy for System Implementation, the outline shown in Figure
3-7 can be followed.

SDP-B essentially represents a new software development plan geared towards the System Imple-
mentation effort as opposed to the System Definition process. Although System Implementation is
much less iterative than System Definition, the activities still deviate from the standard waterfall
approach. The concentration is centered on functional designs and demonstrations of the system in
the target environment throughout the implementation period. Consequently, the subparagraphs
under paragraph 4.2 of SDP-B should be structured to reflect these activities.

In addition, under paragraph 5 entitled "Formal Software Testing", one should include the class of
test cases to be covered during formal system evaluation activities. Specific cases that address the
class of test cases will be included in the Software Test Description/Procedures document discussed
in Section 3.2.2.1.

3-13

,* . . , * -," . ,.

3.2.1 System Definition

1. Scope
1.1 Identification

1.2 System Overview
1.3 Document Overview

2. Referenced Documents

3. System Components3.1 Overview

A3.2 Rationale

4. Knowledge Base
4.1 Knowledge Representation

4.1.1 Syntax
4.1.2 Taxonomies

4.2 Rationale

5. Inference Processes and Mechanisms
5.1 Reasoning Method
5.2 Control Structures

5.3 Relation to Other Processes
5.4 Rationale

6. User Interface

7. Interfaces

7.1 Internal Interface
7.2 External Interface

8. Notes

Appendixes

Figure 3-8: Functional Design Document Outline

'p'

3-14
O'

% % %

* t M I.~~~ - - - - -I -. -Ir -~ -WW -Ir. V W rW .'-rr.Wr.- ' w'r';

3.2.2 System Implementation

3.2.1.2 Reviews

The System Design and Demonstration Review (SD&DR) is the formal review mechanism scheduled
for the KBS during System Definition. The purpose of this customer/user attended review(s) is
to evaluate the KBS Segment Specification and the current state of the most recent prototype.
Consequently, the partitioning of the system and its associated requirements will be scrutinized for
accuracy, completeness, correlation, optimization and risk. The SD&DR will be conducted when
the System Definition effort has proceeded to the point where system characteristics are defined,
configuration items identified and requirements established. Depending on system complexity, more
than one SD&DR may be scheduled during System Definition.

Note that the preliminary FDD and SDP-B are reviewed at the beginning of the system implemen-
tation process (see section 3.2.2.2).

3.2.1.3 Baselines

When the IRS and KSS have been accepted by the customer in terms of completely defining the
system's requirements, these documents shall be entered into the Functional/Allocated baseline. In
this manner, there is a level of formal control over the finalized set of requirements and system par-
titioning. Changes to the Functional/Allocated baseline requires an Engineering Change Proposal
(ECP) as defined in MIL-STD-480.

3.2.2 System Implementation

System Implementation is the process of developing the final product for the target environment.
Knowledge base refinement and informal testing of the incrementally built system occurs in an
iterative fashion until the system is ready for formal test procedures. The following subsections
describe the products, reviews and baselines depicted in Figure 3-4 under System Implementation.

3.2.2.1 Products

Within the System Implementation process, the recommended deliverable products consist of doc-
umentation and code. Delivery of the code occurs at the end of this process when the system
has been tested and accepted by the customer. The specific documents called for consist of the
following:

" Functional Design Document (Updated);

" Software Test Description/Procedures Document;

" Functional Product Specification;

" Software Test Report; and

" System Support Documents.

Each document is described in the following paragraphs.

3-15

• " " -. "" -- - %-%"%

3.2.2 System Implementation

3.2.2.1.1 Functional Design Document (Updated FDD) As System Implementation be-
gins, the contractor starts to develop software for the target environment based on the design
concepts presented in the preliminary FDD. Because implementation may reveal some flaws in the
initial design work or the need for additional knowledge acquisition/representation, some proto-
typing will occur during System Implementation. As the design ideas in the preliminary FDD are
updated and/or modified, they need to be captured in written form. At some point during the
System Implementation process, the preliminary FDD should be updated. The updated FDD will
follow the same outline as the preliminary FDD shown in Figure 3-8.

Depending on the size and complexity of the system at hand, more than one updated version of
the FDD may be required.

3.2.2.1.2 Software Test Description/Procedures Document (STD) The STD document
*" identifies the information necessary to conduct formal CSCI testing for the KBS. The format of the

document can follow that of DI-MCCR-80015A (draft) reasonably well as outlined in Figure 3-9.

Within paragragh 5 of DI-MCCR-80015A (draft), the procedures to be used to perform static eval-
uation of the knowledge base should be included in addition to the specific test cases described

. relative to dynamic evaluation of the KBS.

3.2.2.1.3 Functional Product Specification (FPS) The FPS consists of the design docu-
ments as well as software listings that pertain to the implemented KBS. A suggested outline for
the FPS is presented in Figure 3-10.

Note that in subparagraph 3.1.1, the Functional Design data may either contain or reference the
appendix that contains the most recently updated FDD.

3.2.2.1.4 Software Test Report (STR) The STR contains a record of the formal testing
performed for the KBS CSCI. The format of the STR can follow that of DI-MCCR-80017A (draft)
under DOD-STD-2167A (draft). A high level outline of this data item description is shown in
Figure 3-11.

Note that in paragraphs 3 and 4, the sections are broken down by individual tests.

3.2.2.1.5 System Support Documents The requirement for the types of different System

Support documents should be determined by the customer on a system-by-system basis. Specific
documents that may be required include

* Software User's Manual;

9 System Operation Manual;

3-16
6

%b - "':- 0 - , , . * ,

3.2.2 System Implementation

1. Scope
1.1 Identification
1.2 System Overview
1.3 Document Overview

2. Referenced Documents

3. Formal Test Identification
3.1 General Test Requirements

3.2 Formal Test Classes
3.3 Formal Test Levels
3.4 Formal Test Definitions
3.5 Formal Test Schedule
3.6 Data Recording, Reduction and Analysis
3.7 Formal Test Reports
3.8 Assumptions and Constraints

4. Formal Test Preparations

5. Formal Test Descriptions

6. Notes

Appendixes

Figure 3-9: Software Test Description/ Procedures Outline

3-17

2 .(, P2 % %.
% • - , .- - -,. ,,. , .°. .° .-. . .. • '. ., , ,. '. , . ,, ." ,. ,.' " ." J , . ," ,. , . ,% %

3.2.2 System Implementation

"N..

1. Scope
1.1 Identification
1.2 System Overview

1.3 Document Overview

2. Referenced Documents

3. Requirements
3.1 CSCI Listings

3.1.1 Functional Design
3.1.2 Knowledge Base Listings
3.1.3 Rule Relationships

,. 3.1.4 KBS Shell Listing (if available)
A 3.1.5 Inference Mechanism Listing

3.1.6 User Interface Listing (if available)
* 3.1.7 Other Related Listings

4. Notes

Appendixes

Figure 3-10: Functional Product Specification Outline
',

1. Scope
1.1 Identification
1.2 System Overview

.'p. 1.3 Document Overview

2. Referenced Documents

3. Test Overview

4. Test Results

. 5. CSCI Evaluation and Recommendations

6. Notes
Appendixes

0. Figure 3-11: Software Test Report Outline

'V 3-18

S/

",, % % _*. % *. o,..%, 'p -.-% ,' " .. . 'p -.' .5' * "-.% -. IP .- .% . . *,- ' . % % ' , %

3.2.2 System Implementatioij

" Firmware Support Manual;

* Computer Resources Integrated Support Document; and

" Version Description Document.

The format of these documents can follow the respective data item descriptions under DOD-STD- W

2167A (draft).

3.2.2.2 Reviews

The Preliminary Design & Demonstration Review (PD & DR) kicks off the System Implementation IL
process. Final documents from System Definition, the preliminary FDD and SDP-B, are evaluated
and the final prototype is demonstrated. Review of these products should concentrate on the
proposed system partitioning, knowledge base coverage, knowledge representation including a walk-
through of the "rules", and inferencing strategies relative to the target environment. "

The Critical Design & Demonstration Review (CD & DR) should be scheduled sometime into the
System Implementation process. Depending on the system schedule and complexity, multiple CD &
DR's may be planned. The purpose of the CD & DR is to review the current status of the system. -

This includes a review of the updated FDD and a demonstration of the system as implemented to
date. The review should ensure that the knowledge base completely covers the predefined domain
and that the system is making progress towards satisfying the baselined requirements.

The Test Readiness Review (TRR) is held near the end of System Implementation to determine
if the test procedures are complete and if the KBS is ready for formal CSCI testing. The STD %

document is reviewed and the test procedures compared with the test planning documented in
SDP-B. The customer may also review the results of the informal testing efforts.

At the end of System Implementation, Physical and Functional Configuration Audits are held.
The Physicat Cofi~guration Audit (PCA) is a technical evaluation of the KBS to verify that the
"as-built" CSCI agrees with the technical documentation that describes it. The Functional Config-
uration Audit (FCA) is performed to validate that the KBS has been completed satisfactorily and
achieves the performance and functional characteristics as specified in the Functional/Allocated
baseline.

3.2.2.3 Baselines

Two baselines are established during the System Implementation process: the Developmental Con-
figuration and the Product baseline. The Developmental Configuration is a contractor controlled ft
mechanism which is used to track the FDD's and the source/object code as the system progresses
towards completion. The precise tracking mechanisms and controls are defined in SDP-B.

The Product baseline is a formal or customer controlled baseline into which the FPS and the final
versions of the source and object code are entered. Changes to the Product baseline require an

ECP.

3-19

% . 1% VA '".- ~*~~ '

3.2.3 Systein Operation

3.2.3 System Operation

The System Operation process involves support on an (is ,t't-ded basis. As enhancements are re-
quested, activities may cycle back to System Definition or Implementation as a function of the

degree of system modification. In any case, changes made must be reflected in associated docu-
mentation which should be entered into the existing baselines along with the updated source and
object code.

3.3 Advantages of the Postulated Model(s)

3.3.1 Resolution of Common Software Problems

Historically, the issues of control, visibility, quality, and supportability have been common problems
in the software life cycle. The following paragraphs discuss how the postulated KBS model attempts
to resolve these issues.

Control of the developing software is addressed by the inclusion of baselines and the developmental
configuration into the KBS development process. The baselines provide a means of formally tracking
and controlling the evolving software. The developmental configuration provides a similiar informal

-. . mechanism wherein the contractor is responsible for defining and maintaining internal controls.

The documents, reviews and demonstrations called for by the KBS interface model provide visibility
into the development process. They also provide a means by which the quality of the software can
be assessed. The iterative design approach allows for early and constant verification/validation
of the quality of the system. As a result, flaws in the requirements for the system can be found

early in the development process thus avoiding costly design deficiencies when found late in the
software life cycle. The model also allows for audits to be performed in which the development

methodologies used can be compared to those stated in the development plans.

The documents produced by applying the KBS model contain the necessary information to allow for

S... the support of the system. In addition, the justification behind the early design decisions included

in the KBS documents provides useful information that enhances the supportability of the system.
The cycling back to the development process that occurs when the system undergoes design changes
and enhancements is provided for in the postulated KBS model. Reiteration will provide a system
of updated documentation as changes are made.

3.3.2 Meets DOD Management Needs

In terms of management needs, the KBS model requires enough products to give the managers
visibility and control over the development process. The delivery of the SDP-B prior to the start of
-y-tem Implementation provides a more realistic scoping of the work to be managed and controlled
during that stage of the process. This approach recognizes that the complete development process
can not be detailed at the start of System Definition and that replanning is a necessary part of

* developing KBSs. This planning approach provides evolving visibility and control specifics to be
addressed as the KBS evolves.

3-20

%%

.=~

;... ..

3.4 Comparison of KBS and 2167 Interface Models

With the inclusion of prototyping in the KBS model, the engineering process can work effectively.
The iterative nature of the model should help the engineers build quality systems. The model does
not over burden the engineers with a large amount of documentation. The documents required are
those that are needed in order to support the system.

As previously stated, verification/validation of the system begins early on and continues throughout
the development process. The testing approach presented in section 2.2.4 will provide an adequate
validation of the system in terms of KSS requirements satisfaction. Namely, the testing approach
will demonstrate the performance, functions and interfaces of the system with the goal of proving
that the d, veloped system is of sound quality and works as expected.

3.4 Comparison of KBS and 2167 Interface Models

3.4.1 Overview .-.
,. S. .i

The KF3S interface model was designed to be compatible with both DOD-STD-2167 and the 2167A
(draft) interface model. This was done to accomodate the development of hybrid systems containing
both conventional and KBS software. Figure 3-3 depicts how a hybrid system may be organized. -

As indicated, one CSCI of the system would be comprised of the KBS. In systems with more than

one KBS, each knowledge base portion would be one CSCI. The KBS should not be broken down
into several CSCIs, as this would prove to be a difficult task and one that would most likely hinder
the success of the system.

Regardless of the system type, KBS or hybrid, the system analysis and design activity and its
products are largely unchanged: except for the identification of what parts will be conventional
software and what parts will be implemented using a KBS approach. Also, the system support
activities and products remain the same. Table 3.4.1-1 depicts the 2167/2167A (draft) phases
and how they correlate to the KBS processes. As indicated, the phases of pre-software develop-
suent, software requirements analysis, and preliminary design, or their equivalent, are performed
during the KBS systern definition process. Likewise, detailed design, coding and unit testing, CSC
integration and testing. CSCI testing, and systems integration and testing occur during the KBS
system implementation process. Lastly, the phase of production and deployment take place during
the KBS system operation process.

3.4.2 Products

Table 3.4.2-2 depicts the correlation between 2167A (draft) and KBS products. Some of the
products are the same in both models and therefore do not appear in this table. Namely, indi-
vidual support documents such as Software Users Manual, Computer System Operations Manual, A
Firmware Support Manual, Computer Resources Integrated Support Document, and Version De-
scription)ocument d not appear. Integration documents such as System Integration Test Plans,
System hnt-Agr.tir,. ' -' , ,- . .. , Intcgration Tcst Rcport are also unchanged. The

%¢Operational Concept Document is another product which is the same in both models.-_.. ,

The PIRS and IRS contain the same information in both models. In the KBS model, we suggest
including these documents in the PKSS and KSS respectively. The PKSS and KSS documents

.0

3-21

+." ," " " ." , . + + .~ "+ ," •"' ° -" "* * .+ -+ •• - .". . +% + .- - • ". " % % . ". % +. . " .N
p' *.,. .-. -°- - -.-.- •• .••• -"* - m

•

• .' *-"
"

" •" + - . "" - • " " m

,+-,,,.", ,,'.,+ +,.',,3
+
,., ++, ', .,., ',..+o+,,L,, . dl'..,.'m" " ?+,+ ,...".. .,.,.-...-- € . M *" *5" ;

3.4.2 Products

'Table 3.4.1-1: Mapping of Phases to Processes

2167/2167A (Draft) KBS

Pre-Software Development:

System Concepts

System Requirements Analysis System Definition

Software Requirements Analysis

Preliminary Design

Detailed Design

Coding and Unit Testing

CSC Integration and Testing System Implementation

CSCI Testing

Systems Integration and Testing

Production and Deployment System Operation

4.

3-22

O'

.5" . .4'

-. 7~~~~~, -%P. r 6 -w w_;w.

3.4.2 Products "'

-d.% ,%

Table 3.4.2-2: Mapping of Products

2167A (Draft) KBS

Preliminary Interface Requirements Specification Preliminary Interface Requirements Specification %

SSpecification

Preliminary KBS Segment Specification ._

Preliminary Software Requirements Specification

Interface Requirements Specification Interface Requirements Specification

System Segment Specification

KBS Segment Specification ."-

Software Requirements Specification

Software Development Plan A
Software l)evelopment Plan

Software Development Plan B

Software Top Level Design Document Functional Design Document (Preliminary)

Software Detailed Design Document Functional Design Document (Updated)

N,_.- 7" 0

Software Test Description (Test IDs)

Software Test Description (Cases) Software Test Description/Procedures

Software Test Description (Procedures)

Software Test Reports Software Test Reports *

Software Product Specification Functional Product Specification
A.la \

System Support Documents System Support Documents 7:
'°a' - *

.'..'.

e---

3-23 a''

,-"'"'- .- ..*''"""%% "" .- -- . ..- ,. -"" "-"'"', .. .4.,""-"".- . -V""h.;,'% V
,2 2 5 - ".". ,' Vj' "

3.4.3 Reviews

contain added information when compared to the 2167A (draft) equivalent products. The addi-
tional information includes: system domain information, inferencing mechanism to be used, and
software requirements information. The software requirements information is extracted from the
2167A (draft) Preliminary Software Requirements Specification (PSRS) and Software Require-

ients Specification (SRS) documents. Because of the small development team concept typically
employed, treating requirements at the segment level for the software readily lends itself to most
KBS development approaches.

The 2167A (draft) SDP document is divided into two documents in the KBS model: SDP-A
and SDP-B. The SDP-A contains information pertinent to the software development activities

. during the System Definition process and the SDP-B contains information pertinent to the software
development activities during the System Implementation process. As the activties of KBS software
development are different from those of conventional software development, the section of "Software
Standards and Procedures" will focus on the activities germane to the type of software being
developed. The SDP-B will also have to address and denote the class of test cases to be used in
evaluating the system.

The Software Top Level Design Document (STLDD) and Software Detailed Design Document
-0. (SDDD) of the 2167A (draft) are replaced by the preliminary FDD and the updated FDD re-

spectively. The FDDs contain detailed information on the knowledge bases of the system and the

inference mechanism used. Along with this detailed information is the inclusion of the reasons for
selecting the knowledge representation and reasoning method being used.

The FPS has a similiar format to the Software Product Specification (SPS) of 2167A (draft). Again,
additional information to be included in this document relates to knowledge base descriptions.
Namely, the Functional Design, Knowledge Base listings, Rule Relationships, KBS Shell listings,
Inference Mechanism listing, and any other related listings.

The information contained in the three Software Test Description documents of the 2167A (draft)

is included in the KBS STD document. Specific information on how dynamic and static evaluation
of the KBS will be performed, is also contained in this document. The STRs of the KBS model
follow the same format as the STRs of the 2167A (draft).

3.4.3 Reviews

Table 3.4.3-3 depicts the correlation between 2167/2167A (draft) and KBS reviews. The System
Requirements Review (SRR) is not listed in the table as, in hybrid systems, this review should
address KBS segment requirements where appropriate.

The System Design Review and Software Specification Review of the 2167/2167A (draft) model
are combined into the SI)&DR of the KBS model. The items to be reviewed during the SD&DR

- are listed below

* KSS

- System Partitioning

- Current Set of Requirements

3-24

0'

-~~~~~~~. ,....,..... ,. , ...
'% % %., ,. ' , -. , ' " ,. '

%t %

3.4.3 Reviews
:.Fl

-. %

Table 3.4.3-3: Mapping of Reviews and Audits

2167/2167A (Draft) KBS I

System Design Review -

System Design & Demonstration Review
Software Specification Review ____

Preliminary Design Review Preliminary Design & Demonstration Review

Critical Design Review Critical Design & Demonstration Review(s)

Test Readiness Review Test Readiness Review

Functional Configuration Audit Functional Configuration Audit

Physical Configuration Audit Physical Configuration Audit

3-25

%N SS

% ~ % ~

3.4.3 Reviews

* IRS

" Prototype Demonstration

- Domain

- Knowledge Base

- Inference Mechanism

- Knowledge Representation

In reviewing the domain, the focus is on determining if the domain is the appropiate size. The
"* decision being to either enlarge, reduce or retain the domain. The item of knowledge base is

addressed to determine if what is there already is correct and what knowledge is missing. The
inference mechanism and knowledge representation are reviewed to ascertain the suitability of the

methods being used.

The PD&DR of the KBS model is similiar to the Preliminary Design Review of the 2167A (draft)
model. The PD&DR should review the following KBS items:

* Preliminary FDD

e SDP-B

* Final Prototype Demonstration

- Domain

- Knowledge Base

- Inference Mechanism

- Knowledge Representation

* Final Set of Requirements

*The prototype issues are reviewed in the same context as during the SD&DR.

The CD&DR of the KBS model is similiar to the Critical Design Review of the 2167A (draft)
model. The following are the items to be reviewed during the CD&DR:

* Updated FDD

* Demonstration and Current Status of Implemented System

- Knowledge Base Coverage

- Inference Mechanism

- Knowledge Representation

The review of the knowledge base, representation and inference mechanism items is focused on an
as-implemented basis.

The TRR, FCA, and PCA of the KBS model are all essentially the same as their counterparts
in the DOD-STD-2167/2167A (draft) models. In hybrid systems the KBS reviews and audits can

either be included into the corresponding 2167/2167A (draft) reviews and audits, or they can be
performed separately.

3-26

0

%. :~.

3.d.4 Basellnes

Table 3.4.4-4: Mapping of Baselines/Configuration

2167/2167A (Draft) KBS

Functional Baseline
Functional/Allocated Baseline

Allocated Baseline

Developmental Configuration Developmental Configuration

Product Baseline Product Baseline

3.4.4 Baselines

Table 3.4.4-4 depicts the correlation between 2167/2167A (draft) and KBS baselines and configu-
ration. As indicated, the Functional and Allocated Baselines of the 2167/2167A (draft) model are
combined into one baseline named the Functional/Allocated Baseline. The following products are
entered into the noted KBS baselines/configuration:

" Functional/Allocated

- IRS

- KSS

" Developmental Configuration

- FDD

- Source and Object Code

" Product

- FPS

- Updated Source and Object Code

3-27

% % %

.. J %.\
% %

SECTION 4

Recommended Studies/Activities

4.1 Model Application Case Studies

The KBS Developer/Customer Interface model shown in Figure 3-4 was derived from case study
data and coupled with DOD acquisition agency needs. Given that an interface mechanism has been
developed, the next logical step would be verification of the model. Application of the KBS model
on a live project would allow one to track activities and identify deviations between the interface
model and the actual effort. Once identified, an evaluation could be made to determine whether the
deviant activities are unique to the particular project or a deficiency of the KBS interface model.

Application of the model would also enable one to assess the suitability of the recommended prod-
ucts, reviews and baselines. Following the verification effort, the interface model could be adjusted
as necessary to better reflect the acquisition/development process.

4.2 Technology Studies

This subsection identifies KBS development areas requiring further study as they pertain to critical
system functions and risk reduction efforts. None of these areas were within the scope of work for
the current contract.

4.2.1 Critical System Functions

The development of real-time KBS systems needs to be explored further. If KBS tasks cannot
be accomplished within the time limits required by a particular system, alternate architectures to
remove the KBS tasks from the critical path will have to be investigated.

Decision and control issues need to be defined to highlight areas where KBS's will enhance the
capability of the user, as well as functional areas that can be trusted to computer automation.
Answers from questions generated by these issues should address how the interface with the man
in the loop will be handled, along with the amount of functional autonomy to be programmed into
the operational computer system.

lntegraticc cf KBS !!ftwarc ?nd the specific hardware implementations designed to support KBS
systems is an area needing more scrutiny. The hardware architectures with the greatest near term
payoff for the support of KBS functions need to be evaluated in terms of maturity, reliability,
functional performance and program release.

4-1

o VrNA. % oX % 110 ''1 1

.. % S.

4.2.2 Risk Reduction Efforts

4.2.2 Risk Reduction Efforts

Formal testing of KBS software requires further study, especially in the area of acceptance criteria
for these nomiileteriiiinistic systenis. Since one of the goals of KBS systems is to work under uncertain
conditions, robustness is another level of test that. should be addressed in more detail.

Questions about system and software reliability need to be addressed. This will be complicated by
the presence of indeterininancy in the KBS software and the type of hardware that may be required
to support the KBS systems. There is a need for the study of the mutual effects of software fault
tolerance and KBS technology on each other.

Maintenance of KBS will have support requirements and procedures that are different, from those
currently used in conventional software. An understanding of required maintenance actions must be
defined. Tradeoffs in the system design and implementation need to reflect the expected workload
in maintaining these programs.

Fromu a management perspective, estimation procedures need to be developed to predict the ex-
_ pected cost of proposed KBS software in terms of effort and dollars. The relevant influential pa-

*Q rameters need to be defined in order to produce cost and schedule models which closely represent
N, the development process.

Lastly, the applicability of prototyping techniques to large conventional software systems should
be investigated. Given the extensive set of requirements associated with large military systems,

-' prototyping in the Pre-Software Development phase may facilitate the requirements analysis task
and reduce the risk of building the wrong or an incomplete system.

-V.

4.3 Engineering Discipline

Last but not least, is a need to address areas such as standard languages, support environments
and interfaces. For example, is it cost effective to move to Common LISP as a standard language?
If so, how is it controlled? Is there reason to believe a standardized support environment consisting
Sof both hardware and software tools will make DOD's job any easier? What interface standards
should be promulgated from conventional software to KBS software or vice versa? Is there a need
to define data flow and control standards? What about language interface issues?

All the above items are potential candidates for investigation. Each represents a further level of
detail below the modeling process which needs to be examined for systems of the future.

_..

4-2

-.4. e , _ , % .€ .. . _ . € ¢ , ,, , ..' N,_ ,"
. ,,".d, ". ,, . .% ",. . . % ,,' s,% % ,% 5 , ,' '..% % %', ' % "'% % ". , ,,' '''.'

Bibliography

IAd ,,ni. John A. and Fischetti. Mark A. "Star Wars- SDI: the grand experiment". IEEE
4,'- 117n, Vol. 22. No. 9, pp. 134- 64, September 1985.

2 I ervgi. W. E "Architect tire prototyping in the software engineering environment". 1BBA!
.' qtins Jo urnal, vol. 23, No. 1, p. 4-18, 1984.

3v Boehmi, Barry W_. Gray, Terence E., and Seewaldt, Thomas. "Prototyping Versus Specifying:

.Niul1tiproject Experiment". IEEE Transactions on Software Engineering, Vol. SE-lu, No. 3,
pp. 290--302, May 1984.

4l C.hurch, V.E.. Card, D.N., Agresti, V. W., and Jordan, Q.L. "An Approach for Assessing
Soft ware Protot ypes". .4 CM SIG50F T SoftWOare Engineerz ng Notes, Vol. 11, No. 3, pp. 65-76,
Julyv 1986.

5j Clapp, .1. A., 1-ockett, S. M., Preile, M. J., Tallant, A. M., and Triant, D. D. "Expert Systemrs
for C I". Mkitre Software Center, Contract No. ESD-TR-85-125 Vol. 1, October 1985.

6 Connell, John and Brice, Linda. "Rapid Prototyping". Datomtatzon, Vol. 30, No. 13, pp.
93 100. August 1984.

7' Correll, John 3'. "Machines That Think". Air Force Magazine, pp. 70-75, July 1986.

X8 (rowlev, John D. "The Application Development Process: What's Wrong With It?". Perfor- '

nianc Evaluation Review, Vol. 10, No. 1, pp. 179-187, Spring 1981.

f9* Daley, Philip C. "C I I Rapid Prototype Investigation". Martin Marietta Denver Aerospace,
Contract No. RADC-TR-85-2 16, January 1986.

11 i e Marro, Porn. "Structured Analysis and S5ystem Specification". Yourdlon Press, New York,
N Y. 1978.

Il I] I rgn Edwin M. "Al Issues for Real-Time Systems". Defense Electronics, pp. 150-160, June
1986.

121 Drulfel, L.E. and Kernan; Joseph E. and Paige, K.K. and Riski, William A. "Report on the
DoD Task Force on Software Problems". Third Draft, July 15, 1982.

1131 Eastport Study Group. "A Report to the Director,, SDIO". Technical Report, 1985.

[14] Faden, Michael. "Software prototyping - a Misnomer and a Muddle". Dotalznk, pp. 6-9,
September 1984.

[151 Gates, K.H., Adelman, L. and Lemmer, J.F. "Management of Al System Software Develop-
ment for Military Decision Aids". In Proceedings of Expert 5ystems in Government Symposiunt, ~ ~
October 1985.

1161 Glass, Robert L. "Some Thoughts on Prototyping". Systemn Development, Vol. 5, No. 8, pp.
7-8, October 1985.

BIB- I

d% %
~~ pr P~~*- -- .~'*~-%- j ~

3~1,% a

Dibliograpliy

171 iarnion, Paul and King, David. -E.rpcrt Systems, Artifical Intelligence in Bustncss". John
Wiley & Sons, New York, NY, 1985.

181 Honeywell Computer Sciences Center. "RaPIER(Rapid Prototyping to Investigate End-user
Requirements)". Contract No. N00014-85-c-0666, March 28, 1986, pp. 1-74, 235 237, 270--274.

* 19j Jacob, Robert J. K., anid Froscirer, Judith N. "Developing aSoftware Enrgineering Methodology
for Knowledge-Based Systems". Naval Research Laboratory Report 9019, December 17, 1986.

t20] Kauber, Peter G. "Prototyping: Not a Method but a Philosophy". Journal of System s Man-
agecn't, vol. 36, No. 9, pp. 28-33, September 1985.

121] Lieblein, Edward. "The Department of Defense Software Initiative-A Status Report". ('oi-
mlnzicotioins of the AC'M, Vol. 29, No. 8, pp. 734-744, August 1986.

122] Liebowitz, Jay. "Evaluation of Expert Systems: An Approach and Case Study". In The Se.ec-
orid Conference on Artificial Intdlignce Applications , Sponsored by IEEE Computer Society,
December 1985.

J231 Lin, Herbert. "The Development of Software for Ballistic-Missile Defense. Scientific A merican,
- . Vo!. 253, No. 6, pp. 46-53, December 1985.

241 Lockheed-Georgia Company. "Software Development Plan for the Pilot's Associate Porgram".
Contract No. F33615-85-C-3804, July 7, 1986.

25] Lynch, Frank, Marshall, Charles, O'Connor, Dennis and Kiskiel II, Mike. "Al in Manufacturing
at Digital", The AI Magazine, Vol. 7, No. 5, pp. 53-57, Winter 1986.

126 Matsurnoto, Yoshihiro. "Management of Industrial Software Production". Computer, Vol. 17,
No. 2, pp. 59-70, February 1984.

1271 McGraw, Karen L. and Bruce A. "The Phantom Crew - Al in the Cockpit". DS and E, pp.
44-54, November 1985.

]28] Metzger, P.W. "Managing a Programming Project". Prentice-Hall, Englewood Cliffs, N.J.,
1973.

291 Peters, Lawrence J. "Software Design: Methods 6_4 Techniques". Yourdon Press, New York,
0 NY, 1981.

301 Powell, Christopher A., Pickering, Cynthia K. and Keith T. Wescourt. "System Integration of
Knowledge-Based Maintenance Aids. In Fifth National ('onference on Artificial Intelligence,
Sponsored by AAAI, December 1986.

..- ~[31] Pressman, Roger S. "Software Engineering: A Practitioner's Approach". McGraw Hill Book

Company, United States, 1982.

321 Sanders Associates Inc. "Software/Microprocessor Task Force". Final Report, May 6, 1986,
pp. 33-36.

33] Sarvari, I. L. "The Case For PROTOTYPING In Systems Development". Canadian Datasys-
terms, Vol. 15, No. 10, pp. 100-104, October 1983.

BIB-2

.S.:, Z -, , _, .

Bibliography

34]1 Schiach. Stephen 11. "lPrototyping, Design and Early Cost Estimation Problem". In Third
In t(rnattwnal I IorA'sh op on Softwa re 5pecification and Design, Sponso red by IEEE Co ;np u U
.S,')c.wy, August 1985.

351 Segall, Mark J. "The Use of Prototyping to Aid Implementation of an On-Line System".
.5ysteins. Objectives, Solution, Vol. 4, No. 3, pp. 141-156, August 1984.

361 Soniin, Hlerbert A. "Whether Software Engineering Needs to be Artificially Intelligent". IEEE
Transactions on Software Engineering, Vol. SE-12, No. 7, pp. 726-732, July 1986.

37] Taylor. Tamara and Standish, Thomas A. "Initial Thoughts on Rapid Prototyping Tech-
niques". AC,1 SIGSO0FT S5oftware EnginCCering Notes, Vol. 7, No. 5, pp. 160-166, December
1982.

138] Weiser, Mark. "Scale Models and Rapid Prototyping". AC(AI SIGSOFT Software Eigzieering
Noies, Vol. 7, No. 5, pp. 181-185, December 1982.

[391 Wheildon, David. "Prototyping; Shortcut To Applications". Computer Decisions, vol. 16, No.
7, pp. 138-142, 146-147, June 1984.

[40] Yourdon, Edward. "Techniques of Programn Structure anti Design". Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey, 1975.

111B I
l~lI~ :1 %

-~~~ ~ % % -- %-- . - - . --

-* J,~

Acronyms

CDR Critical Design Review
CD&DR Critical Design and Demonstration Review
CPCI Computer Program Configuration Item
CRISD Computer Resources Integrated Support Document
CSC Computer Software Component
CSCI Computer Software Configuration Item
CSDM Computer System Diagnostic Manual
CSOM Computer System Operator's Manual
DBDD Data Base Design Document
DID Data Item Description
DOD Department of Defense
ECP Engineering Change Proposal
FCA Functional Configuration Audit
FDD Functional Design Document
FPS Functional Product Specification

FSM Firmware Support Manual
HIPO Hierarchical Input-Processing-Output
HWCI Hardware Configuration Item
IDD Interface Design Document
IRS Interface Requirements Specification
JLC Joint Logistics Commanders
KA Knowledge Acquisition
KBS Knowledge Based Systems
KR Knowledge Representation
KSS KBS Segment Specification
OCD Operational Concept Document
OTS Off-the-shelf
PCA Physical Configuration Audit
PDL Program Design Language
PDR Preliminary Design Review
PD&DR Preliminary Design and Demonstration Review
PIRS Preliminary Interface Requirements Specification

PKSS Preliminary KBS Segment Specification
PSRS Preliminary Software Requirements Specification
SDDD Software Detailed Design Document
SDF Software Development Folder
SDP Software Development Plan
SDP-A Software Development Plan A
SDP-B Software Development Plan B
SDR System Design Review
SD&DR System Design and Demonstration Review

ACR-1

- p - ~ ,

Acronyms

SPM Software Programmers Manual
SPS Software Product Specification
SQE Software Quality Evaluation
SQEP Software Quality Evaluation Plan
SRR System Requirements Review
SRS Software Requirements Specification
SSR Software Specification Review

" SSS System Segment Specification

STD Software Test Description/Procedures
STLDD Software Top Level Design Document
STP Software Test Plan
STPR Software Test Procedure
STR Software Test Report
SUM Software User's Manual
TRR Test Readiness Review

p...-

, ,-,ACR-2

0 .. 5:: :.. ; . . .,; :.,>. ,,:,

MISSION
Of

Rawe Air Development Center
RAO24C -'an~s and executes !t~e.atch, devefpmre~t, tes~t
a:,d 5&>C'cted cacqw54frcoa ptQ hcLam6 in suppm~t o6

rn-mad, Ccwattoe, Cc'mmutniccLLon.s and Inteteigence
(C3 X; c Civ' tce.s. Teck n.caL and enieelin

s '~L t kthLn a ' e a 6 o6 competence is ptovided toc
SESV Ptooqtam 0O ' c. (P's) and othe~t ESV eZ eae~ts

to' e6'enctCivea cqul- ston o6 C3 1 systems.
Tha ~ct~a o,) tchnicacu ompetence -&ceude

(>mr~znrcz2cn, command and cont'tot, bat-te
m:~ wamen , u 'o ,mtmc'oa ,,toces&sinq, suteiance

6tte4Uence data cuieecton and liandeng,
st-ate LA. Sences, eec-t'omagnetics, caid
~ C~n , ad ea Lc7ttnic, main to Lnab.LZity,

~. cic~c 'bUC.

IL

V

'p
'p

F
I

/
a.

S
a-.,.

9-

S

U

/
*

~ J'.~P d ?"pf~ ?~-~-' ~ '~' - ~ ;A'A~AV'.~
'A. 'A.

